计算pandas数据帧中每一行的百分比

时间:2015-07-17 17:49:38

标签: python pandas

                  country_name  country_code  val_code  \
   United States of America           231                     1   
   United States of America           231                     2   
   United States of America           231                     3   
   United States of America           231                     4   
   United States of America           231                     5   

      y191      y192      y193      y194      y195  \
   47052179  43361966  42736682  43196916  41751928   
   1187385   1201557   1172941   1176366   1192173   
   28211467  27668273  29742374  27543836  28104317   
   179000    193000    233338    276639    249688   
   12613922  12864425  13240395  14106139  15642337 

在上面的数据框中,我想为每一行计算该val_code占用的总百分比,从而得到foll。数据框。

即。总结每一行并除以所有行的总和

                  country_name  country_code  val_code  \
   United States of America           231                     1   
   United States of America           231                     2   
   United States of America           231                     3   
   United States of America           231                     4   
   United States of America           231                     5  

      perc   
  50.14947129
  1.363631254
  32.48344744
  0.260213146
  15.74323688

现在,我正在这样做,但它无法正常工作

grp_df = df.groupby(['country_name', 'val_code']).agg()

pct_df = grp_df.groupby(level=0).apply(lambda x: 100*x/float(x.sum()))

2 个答案:

答案 0 :(得分:14)

您可以使用lambda函数获取每列的百分比,如下所示:

>>> df.iloc[:, 3:].apply(lambda x: x / x.sum())
       y191      y192      y193      y194      y195
0  0.527231  0.508411  0.490517  0.500544  0.480236
1  0.013305  0.014088  0.013463  0.013631  0.013713
2  0.316116  0.324405  0.341373  0.319164  0.323259
3  0.002006  0.002263  0.002678  0.003206  0.002872
4  0.141342  0.150833  0.151969  0.163455  0.179920

您的示例没有val_code的任何重复值,因此我不确定您希望数据显示的方式(即显示每个v val_code组的列总数与总数的百分比。)

答案 1 :(得分:2)

Ge所有感兴趣列的总数,然后添加百分比列:

In [35]:
total = np.sum(df.ix[:,'y191':].values)
df['percent'] = df.ix[:,'y191':].sum(axis=1)/total * 100
df

Out[35]:
               country_name  country_code  val_code      y191      y192  \
0  United States of America           231         1  47052179  43361966   
1  United States of America           231         1   1187385   1201557   
2  United States of America           231         1  28211467  27668273   
3  United States of America           231         1    179000    193000   
4  United States of America           231         1  12613922  12864425   

       y193      y194      y195    percent  
0  42736682  43196916  41751928  50.149471  
1   1172941   1176366   1192173   1.363631  
2  29742374  27543836  28104317  32.483447  
3    233338    276639    249688   0.260213  
4  13240395  14106139  15642337  15.743237  

因此np.sum将汇总所有值:

In [32]:
total = np.sum(df.ix[:,'y191':].values)
total

Out[32]:
434899243

然后我们在感兴趣的col上调用.sum(axis=1)/total * 100来逐行求和,除以总数并乘以100得到一个百分比。