我有一个包含15000000条记录的csv文件,我试图将其处理到cassandra表中。这是列标题和数据的示例:
为了更好地理解它,这是我在python中的模型:
class DIDSummary(Model):
__keyspace__ = 'processor_api'
did = columns.Text(required=True, primary_key=True, partition_key=True)
month = columns.DateTime(required=True, primary_key=True, partition_key=True)
direction = columns.Text(required=True, primary_key=True)
duration = columns.Counter(required=True)
cost = columns.Counter(required=True)
现在我正在尝试处理csv文件的每一行中的数据,并以500,1000,10000,250等批量插入它们,但结果相同(约为.33秒) 1000,这意味着它需要90分钟才能通过所有这些)。我还尝试使用多处理池并apply_async()
进行每个batch.execute()
调用,没有更好的结果。有没有办法在python中使用 SSTableWriter ,或者做些其他事情将它们更好地插入到cassandra中?作为参考,这是我的process_sheet_row()
方法:
def process_sheet_row(self, row, batch):
report_datetime = '{0}{1:02d}'.format(self.report.report_year, self.report.report_month)
duration = int(float(row[self.columns['DURATION']]) * 10)
cost = int(float(row[self.columns['COST']]) * 100000)
anisummary = DIDSummary.batch(batch).create(did='{}{}'.format(self.report.ani_country_code, row[self.columns['ANI']]),
direction='from',
month=datetime.datetime.strptime(report_datetime, '%Y%m'))
anisummary.duration += duration
anisummary.cost += cost
anisummary.batch(batch).save()
destsummary = DIDSummary.batch(batch).create(did='{}{}'.format(self.report.dest_country_code, row[self.columns['DEST']]),
direction='to',
month=datetime.datetime.strptime(report_datetime, '%Y%m'))
destsummary.duration += duration
destsummary.cost += cost
destsummary.batch(batch).save()
非常感谢任何帮助。谢谢!
编辑:这是我的代码,用于浏览文件并进行处理:
with open(self.path) as csvfile:
reader = csv.DictReader(csvfile)
if arr[0] == 'inventory':
self.parse_inventory(reader)
b = BatchQuery(batch_type=BatchType.Unlogged)
i = 1
for row in reader:
self.parse_sheet_row(row, b)
if not i % 1000:
connection.check_connection() # This just makes sure we're still connected to cassandra. Check code below
self.pool.apply_async(b.execute())
b = BatchQuery(batch_type=BatchType.Unlogged)
i += 1
print "Done processing: {}".format(self.path)
print "Time to Execute: {}".format(datetime.datetime.now() - start)
print "Batches: {}".format(i / 1000)
print "Records processed: {}".format(i - 1)
只是因为这可能有点帮助,这里是connection.check_connection()
方法(以及周围的方法):
def setup_defaults():
connection.setup(['127.0.0.1'], 'processor_api', lazy_connect=True)
def check_connection():
from cdr.models import DIDSummary
try:
DIDSummary.objects.all().count()
except CQLEngineException:
setup_defaults()
答案 0 :(得分:1)
批次通常不是执行插入的最快方法。特别是在包含各种分区的未记录批次中。一些阅读批次here
如果你可以离开cqlengine进行插入,你应该尝试在async callback chaining下的Python驱动程序中实现的cassandra.execute_concurrent。
在误用各种尺寸的批次后,我对插入/秒移动到此方法有了重大改进,但YMMV。