我正在使用包PMCMR
来执行博士后Kruskal-Nemenyi测试。
当我使用默认设置运行测试时:
posthoc.kruskal.nemenyi.test(x=coastal$HIGH_MORTGAGE, g=coastal$SIZECLASS, method="Tukey")
我得到以下结果和警告:
Pairwise comparisons using Tukey and Kramer (Nemenyi) test
with Tukey-Dist approximation for independent samples
data: coastal$HIGH_MORTGAGE and coastal$SIZECLASS
Large Medium
Medium 0.931 -
Small 0.746 0.078
P value adjustment method: none
Warning message:
In posthoc.kruskal.nemenyi.test.default(x = coastal$HIGH_MORTGAGE, :
Ties are present, p-values are not corrected.*
当我运行测试时,将分布更改为Chisq以对关系应用校正,我仍然得到相同的结果,并且不使用卡方分布。
posthoc.kruskal.nemenyi.test(x=coastal$HIGH_MORTGAGE, g=coastal$SIZECLASS, method="Chisq")
Pairwise comparisons using Tukey and Kramer (Nemenyi) test
with Tukey-Dist approximation for independent samples
data: coastal$HIGH_MORTGAGE and coastal$SIZECLASS
Large Medium
Medium 0.931 -
Small 0.746 0.078
P value adjustment method: none
Warning message:
In posthoc.kruskal.nemenyi.test.default(x = coastal$HIGH_MORTGAGE, :
Ties are present, p-values are not corrected.
我想知道包装中是否有错误,或者是否有任何方法我不知道要解决这个问题。
答案 0 :(得分:1)
从版本PMCMR1.0
到PMCMR1.1
(以及> 1.1
)语法略有变化,因此它是dist
,而不是method
,它是:< / p>
posthoc.kruskal.nemenyi.test( x, g, dist = c("Tukey", "Chisquare"), ...)
或
posthoc.kruskal.nemenyi.test(formula, data, subset, na.action, dist =
c("Tukey", "Chisquare"), ...)
包含示例的插图已在版本PMCMR1.3
中相应更新。