有没有办法使用Pycuda检索特定值的索引?

时间:2015-07-16 15:04:37

标签: python numpy cuda pycuda

我有一个尺寸为1000x1000x1000的3D numpy数组。我正在寻找整个数组中值1的索引。 np.nonzero(数组)对于较大的数据集来说非常慢。我想知道是否有办法通过pycuda来做到这一点。还是有其他更有效的方法。

1 个答案:

答案 0 :(得分:1)

之前我没有使用过PyCuda,但是自从我找到good example on how to use thrust in PyCuda后,我提出了以下解决方案。

在内部,它使用thrust::counting_iteratorthrust::copy_if来查找等于1的元素的索引。

虽然这可能会更快,但整个问题存在严重缺陷: 您有一个包含10亿(1000000000)个元素的数组,使用32位整数时需要4 GB内存。 您还需要另一个4 GB的输出数组。 即使您的GPU有那么多RAM,输入数据也需要复制到GPU,这需要一些时间。

如果您的数组主要由零条目组成,那么使用sparse matrix format可能会更好,并且只存储非零条目。 这将节省内存,您根本不必搜索非零条目。

<强> find_indices_thrust.py

import pycuda
import pycuda.autoinit
import pycuda.gpuarray as gpuarray
import numpy as np

from codepy.cgen import *
from codepy.bpl import BoostPythonModule
from codepy.cuda import CudaModule

#Make a host_module, compiled for CPU
host_mod = BoostPythonModule()

#Make a device module, compiled with NVCC
nvcc_mod = CudaModule(host_mod)

#Describe device module code
#NVCC includes
nvcc_includes = [
    'thrust/copy.h',
    'thrust/device_vector.h',
    'thrust/iterator/counting_iterator.h',
    'thrust/functional.h',
    'cuda.h',
    'stdint.h'
    ]
#Add includes to module
nvcc_mod.add_to_preamble([Include(x) for x in nvcc_includes])

#NVCC function
nvcc_function = FunctionBody(
    FunctionDeclaration(Value('void', 'find_indices'),
                        [Value('CUdeviceptr', 'input_ptr'),
                        Value('uint32_t', 'input_length'),
                        Value('CUdeviceptr', 'output_ptr'),
                        Value('uint32_t*', 'output_length')]),
    Block([Statement('thrust::device_ptr<uint32_t> thrust_input_ptr((uint32_t*)input_ptr)'),
          Statement('thrust::device_ptr<uint32_t> thrust_output_ptr((uint32_t*)output_ptr)'),
          Statement('using namespace thrust::placeholders'),
          Statement('*output_length = thrust::copy_if(thrust::counting_iterator<uint32_t>(0), thrust::counting_iterator<uint32_t>(input_length), thrust_input_ptr, thrust_output_ptr, _1==1)-thrust_output_ptr')]))

#Add declaration to nvcc_mod
#Adds declaration to host_mod as well
nvcc_mod.add_function(nvcc_function)

host_includes = [
    'boost/python/extract.hpp',
    ]
#Add host includes to module
host_mod.add_to_preamble([Include(x) for x in host_includes])

host_namespaces = [
    'using namespace boost::python',
    ]

#Add BPL using statement
host_mod.add_to_preamble([Statement(x) for x in host_namespaces])


host_statements = [
    #Extract information from PyCUDA GPUArray
    #Get length
    'tuple shape = extract<tuple>(gpu_input_array.attr("shape"))',
    'int input_length = extract<int>(shape[0])',
    #Get input data pointer
    'CUdeviceptr input_ptr = extract<CUdeviceptr>(gpu_input_array.attr("ptr"))',
    #Get output data pointer
    'CUdeviceptr output_ptr = extract<CUdeviceptr>(gpu_output_array.attr("ptr"))',
    #Call Thrust routine, compiled into the CudaModule
    'uint32_t output_size',
    'find_indices(input_ptr, input_length, output_ptr, &output_size)',
    #Return result
    'return output_size',
    ]

host_mod.add_function(
    FunctionBody(
        FunctionDeclaration(Value('int', 'host_entry'),
                            [Value('object', 'gpu_input_array'),Value('object', 'gpu_output_array')]),
        Block([Statement(x) for x in host_statements])))

#Print out generated code, to see what we're actually compiling
print("---------------------- Host code ----------------------")
print(host_mod.generate())
print("--------------------- Device code ---------------------")
print(nvcc_mod.generate())
print("-------------------------------------------------------")



#Compile modules
import codepy.jit, codepy.toolchain
gcc_toolchain = codepy.toolchain.guess_toolchain()
nvcc_toolchain = codepy.toolchain.guess_nvcc_toolchain()

module = nvcc_mod.compile(gcc_toolchain, nvcc_toolchain, debug=True)



length = 100
input_array = np.array(np.random.rand(length)*5, dtype=np.uint32)
output_array = np.zeros(length, dtype=np.uint32)

print("---------------------- INPUT -----------------------")
print(input_array)
gpu_input_array = gpuarray.to_gpu(input_array)
gpu_output_array = gpuarray.to_gpu(output_array)

# call GPU function
output_size = module.host_entry(gpu_input_array, gpu_output_array)
print("----------------------- OUTPUT ------------------------")
print gpu_output_array[:output_size]
print("-------------------------------------------------------")

生成的代码

---------------------- Host code ----------------------
#include <boost/python.hpp>
#include <cuda.h>
void find_indices(CUdeviceptr input_ptr, uint32_t input_length, CUdeviceptr output_ptr, uint32_t* output_length);
#include <boost/python/extract.hpp>
using namespace boost::python;

namespace private_namespace_6f5e74fc4bebe20d5478de66e2226656
{
  int host_entry(object gpu_input_array, object gpu_output_array)
  {
    tuple shape = extract<tuple>(gpu_input_array.attr("shape"));
    int input_length = extract<int>(shape[0]);
    CUdeviceptr input_ptr = extract<CUdeviceptr>(gpu_input_array.attr("ptr"));
    CUdeviceptr output_ptr = extract<CUdeviceptr>(gpu_output_array.attr("ptr"));
    uint32_t output_size;
    find_indices(input_ptr, input_length, output_ptr, &output_size);
    return output_size;
  }
}

using namespace private_namespace_6f5e74fc4bebe20d5478de66e2226656;

BOOST_PYTHON_MODULE(module)
{
  boost::python::def("host_entry", &host_entry);
}
--------------------- Device code ---------------------
#include <thrust/copy.h>
#include <thrust/device_vector.h>
#include <thrust/iterator/counting_iterator.h>
#include <thrust/functional.h>
#include <cuda.h>
#include <stdint.h>

void find_indices(CUdeviceptr input_ptr, uint32_t input_length, CUdeviceptr output_ptr, uint32_t* output_length)
{
  thrust::device_ptr<uint32_t> thrust_input_ptr((uint32_t*)input_ptr);
  thrust::device_ptr<uint32_t> thrust_output_ptr((uint32_t*)output_ptr);
  using namespace thrust::placeholders;
  *output_length = thrust::copy_if(thrust::counting_iterator<uint32_t>(0), thrust::counting_iterator<uint32_t>(input_length), thrust_input_ptr, thrust_output_ptr, _1==1)-thrust_output_ptr;
}
-------------------------------------------------------

演示输出

---------------------- INPUT -----------------------
[1 2 3 0 3 3 1 2 1 2 0 4 4 3 2 0 4 2 3 0 2 3 1 4 3 4 3 4 3 2 4 3 2 4 2 0 3
0 3 4 3 0 0 4 4 2 0 3 3 1 3 4 2 0 0 4 0 4 3 2 3 2 1 1 4 3 0 4 3 1 1 1 3 2
0 0 3 4 3 3 4 2 2 3 4 1 1 3 2 2 2 2 3 2 0 2 4 3 2 0]
----------------------- OUTPUT ------------------------
[ 0  6  8 22 49 62 63 69 70 71 85 86]
-------------------------------------------------------