主成分分析太慢(MLPY Python)

时间:2015-07-16 14:38:07

标签: python numpy double floating-accuracy pca

我正在使用Python中MLPY APIPCAFast方法。

当学习如下生成的特征矩阵时,该方法执行得非常快:

x = np.random.rand(100, 100)

此命令的示例输出为:

[[ 0.5488135   0.71518937  0.60276338 ...,  0.02010755  0.82894003
   0.00469548]
 [ 0.67781654  0.27000797  0.73519402 ...,  0.25435648  0.05802916
   0.43441663]
 [ 0.31179588  0.69634349  0.37775184 ...,  0.86219152  0.97291949
   0.96083466]
 ..., 
 [ 0.89111234  0.26867428  0.84028499 ...,  0.5736796   0.73729114
   0.22519844]
 [ 0.26969792  0.73882539  0.80714479 ...,  0.94836806  0.88130699
   0.1419334 ]
 [ 0.88498232  0.19701397  0.56861333 ...,  0.75842952  0.02378743
   0.81357508]]

但是,当要素矩阵x由以下数据组成时:

x = 7.55302582e-05*np.ones((100, 100))

示例输出:

[[  7.55302582e-05   7.55302582e-05   7.55302582e-05 ...,   7.55302582e-05
    7.55302582e-05   7.55302582e-05]
 [  7.55302582e-05   7.55302582e-05   7.55302582e-05 ...,   7.55302582e-05
    7.55302582e-05   7.55302582e-05]
 [  7.55302582e-05   7.55302582e-05   7.55302582e-05 ...,   7.55302582e-05
    7.55302582e-05   7.55302582e-05]
 ..., 
 [  7.55302582e-05   7.55302582e-05   7.55302582e-05 ...,   7.55302582e-05
    7.55302582e-05   7.55302582e-05]
 [  7.55302582e-05   7.55302582e-05   7.55302582e-05 ...,   7.55302582e-05
    7.55302582e-05   7.55302582e-05]
 [  7.55302582e-05   7.55302582e-05   7.55302582e-05 ...,   7.55302582e-05
    7.55302582e-05   7.55302582e-05]]

方法变得非常慢...... 为什么会这样? 这是否与x特征矩阵中存储的数据类型有关?

关于如何解决这个问题的任何想法?

0 个答案:

没有答案