我正在尝试对hive中的两个表进行LEFT OUTER JOIN操作。可以理解我们在连接的情况下包括过滤条件以及连接条件,从那里条件模仿以避免全表扫描。参考:https://gist.github.com/randyzwitch/9abeb66d8637d1a0007c
尽管如此,我的查询导致了大量的映射器和缩减器,就好像它正在进行全表扫描一样。
这是我的查询和解释计划。我不擅长理解这个解释计划。 m.date_id
和d.REC_CREATED_DATE
是相应表中的分区列,因此它实际上应该只扫描这些分区。
任何改进我的查询的建议都会有很大帮助。
hive> EXPLAIN SELECT m.execution_id
> ,m.operation_name
> ,m.return_code
> ,m.explanation
> ,d.REC_CREATED_DATE
> FROM web_log_master m LEFT OUTER JOIN web_log_detail d
> on (m.execution_id = d.execution_id AND m.date_id='2015-07-14' and d.REC_CREATED_DATE='2015-07-14') ;
OK
ABSTRACT SYNTAX TREE:
(TOK_QUERY (TOK_FROM (TOK_LEFTOUTERJOIN (TOK_TABREF (TOK_TABNAME web_log_master) m) (TOK_TABREF (TOK_TABNAME web_log_detail) d) (and (AND (= (. (TOK_TABLE_OR_COL m) execution_id) (. (TOK_TABLE_OR_COL d) execution_id)) (= (. (TOK_TABLE_OR_COL m) date_id) '2015-07-14')) (= (. (TOK_TABLE_OR_COL d) REC_CREATED_DATE) '2015-07-14')))) (TOK_INSERT (TOK_DESTINATION (TOK_DIR TOK_TMP_FILE)) (TOK_SELECT (TOK_SELEXPR (. (TOK_TABLE_OR_COL m) execution_id)) (TOK_SELEXPR (. (TOK_TABLE_OR_COL m) operation_name)) (TOK_SELEXPR (. (TOK_TABLE_OR_COL m) return_code)) (TOK_SELEXPR (. (TOK_TABLE_OR_COL m) explanation)) (TOK_SELEXPR (. (TOK_TABLE_OR_COL d) REC_CREATED_DATE)))))
STAGE DEPENDENCIES:
Stage-4 is a root stage , consists of Stage-1
Stage-1
Stage-0 is a root stage
STAGE PLANS:
Stage: Stage-4
Conditional Operator
Stage: Stage-1
Map Reduce
Alias -> Map Operator Tree:
d
TableScan
alias: d
Reduce Output Operator
key expressions:
expr: execution_id
type: string
sort order: +
Map-reduce partition columns:
expr: execution_id
type: string
tag: 1
value expressions:
expr: rec_created_date
type: string
m
TableScan
alias: m
Reduce Output Operator
key expressions:
expr: execution_id
type: string
sort order: +
Map-reduce partition columns:
expr: execution_id
type: string
tag: 0
value expressions:
expr: execution_id
type: string
expr: operation_name
type: string
expr: return_code
type: string
expr: explanation
type: string
expr: date_id
type: string
Reduce Operator Tree:
Join Operator
condition map:
Left Outer Join0 to 1
condition expressions:
0 {VALUE._col0} {VALUE._col1} {VALUE._col2} {VALUE._col3}
1 {VALUE._col3}
filter predicates:
0 {(VALUE._col13 = '2015-07-14')}
1
handleSkewJoin: false
outputColumnNames: _col0, _col1, _col2, _col3, _col19
Select Operator
expressions:
expr: _col0
type: string
expr: _col1
type: string
expr: _col2
type: string
expr: _col3
type: string
expr: _col19
type: string
outputColumnNames: _col0, _col1, _col2, _col3, _col4
File Output Operator
compressed: false
GlobalTableId: 0
table:
input format: org.apache.hadoop.mapred.TextInputFormat
output format: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat
Stage: Stage-0
Fetch Operator
limit: -1
Time taken: 13.616 seconds, Fetched: 90 row(s)
答案 0 :(得分:1)
映射器和缩减器的数量取决于作业是否可并行化以及群集的容量。如果你有很多机器,你会得到更多的映射器和减速器。如果您拥有的机器较少,则会减少。如果作业不可并行化,那么您将获得一个减速器,如下例所示:
select count(distinct column) from x;
以这种方式编写时需要使用单个reducer。
事实上,您需要许多映射器和缩减器才能正常工作。这就是地图减少尺度的方式。很多手可以轻松工作。无论如何,您的左外连接按预期工作。