我有一个学校作业来实现一个hash_set和一个hash_map,我得到一个main.cpp,它有代码来测试这些类(插入,删除,搜索,打印等)。我还给了一个基础的hash_table类,它是一个模板化的类,并且只是告诉“使用自己的新类来使hash_set和hash_map基于测试代码工作”。
如果没有更具体的细节,我假设我应该基于hash_table实现集合和映射,老师说项目可以在两个新类之间的40行代码(wat ??)中完成。但是我甚至无法让hash_set类继承hash_table,因为它是一个模板。我可以在不将hash_set类作为模板的情况下编译好,直到我实例化它,因为测试代码在声明中传递了一个模板类型。但是,如果我尝试使类本身成为模板类型来补偿这一点,那么一切都会中断,我无法追踪错误的来源。我大约8个小时进入这个项目应该是一个小时的项目,所以我在这里结束了。
以下是带有测试代码的原始main.cpp(hash_map已被注释掉,因为我还没有开始:/)
//
// main.cpp
// CS3100Project05_HashCollections
#include "WSUHashTable.h"
//#include "WSUHashMap.h" // Uncomment to test WSUHashMap
#include "WSUHashSet.h" // Uncomment to test WSUHashSet
#include <iostream>
int main(int argc, const char * argv[])
{
///////////////////////////////////////////////////////////////////
/// Part 1 :TEST HASH TABLE ///
///////////////////////////////////////////////////////////////////
{
WSUHashTable<int> example = {1, 2, 3, 4, 1};
std::cout << "Part 1a: Expected output is in any order " <<
"\"1 2 3 4\"\n";
for(int n : example)
{
std::cout << n << ' ';
}
std::cout << std::endl;
std::cout << std::endl;
std::cout << "Part 1b: Expected output is \"Found 2\"\n";
{
auto search = example.find(2);
if(search != example.end())
{
std::cout << "Found " << (*search) << '\n';
}
else
{
std::cout << "Not found\n";
}
}
std::cout << std::endl;
std::cout << "Part 1c: Expected output is \"Not found\"\n";
example.erase(2);
{
auto search = example.find(2);
if(search != example.end()) {
std::cout << "Found " << (*search) << '\n';
}
else {
std::cout << "Not found\n";
}
}
std::cout << std::endl;
}
///////////////////////////////////////////////////////////////////
/// Part 2: TEST HASH SET ///
///////////////////////////////////////////////////////////////////
/***** Uncomment to test WSUHashSet */
{
WSUHashSet<std::string> stringSet = {"1", "2", "3", "4"};
std::cout << "Part 2a: Expected output is \"Found \"2\"\"\n";
{ // Test find() that succeeds
auto search = stringSet.find("2");
if(search != stringSet.end()) {
std::cout << "Found \"" << (*search) << "\"\n";
}
else {
std::cout << "Not found\n";
}
}
std::cout << std::endl;
std::cout << "Part 2b: Expected output is \"Not found\"\n";
stringSet.erase("2");
{ // Test find() that fails
auto search = stringSet.find("2");
if(search != stringSet.end())
{
std::cout << "Found \"" << (*search) << "\"\n";
}
else
{
std::cout << "Not found\n";
}
}
std::cout << std::endl;
WSUHashSet<double> doubleSet = {
1.1, 2.2, 3.2, 4.4, 5.5, 6.1, 7.2, 8.4, 9.9
};
std::cout << "Part 2c: Expected output is in any order " <<
"\"5.5 7.2 8.4 9.9 1.1 2.2 3.2 4.4 6.1\"\n";
for(auto n : doubleSet )
{ // Test using implicit iterators
std::cout << n << ' ';
}
std::cout << std::endl;
std::cout << std::endl;
std::cout << "Part 2d: Expected output is in any order " <<
"\"5.5 7.2 8.4 9.9 4.4 6.1\"\n";
// Part 7: Using explicit iterators while mutating set
for(auto it = doubleSet.begin(); it != doubleSet.end(); )
{ // erase every number less than 4.0
if(*it < 4.0)
{
it = doubleSet.erase(it);
}
else
{
++it;
}
}
for(auto n : doubleSet)
{
std::cout << n << ' ';
}
std::cout << std::endl;
std::cout << std::endl;
}
///////////////////////////////////////////////////////////////////
/// Part 3: TEST HASH MAP ///
///////////////////////////////////////////////////////////////////
/***** Uncomment to test WSUHashMap *
{
WSUHashMap<int, std::string> dict = {{1, "one"}, {2, "two"}};
dict.insert({3, "three"});
dict.insert(std::make_pair(4, "four"));
dict.insert({{4, "another four"}, {5, "five"}});
std::cout << "Part 3a: Expected output is " <<
"\"inserting 1 -> \"another one\" failed\"\n";
bool ok = dict.insert({1, "another one"}).second;
std::cout << "inserting 1 -> \"another one\" "
<< (ok ? "succeeded" : "failed") << '\n';
std::cout << std::endl;
std::cout << "Part 3b: Expected output is " <<
"\"contents: " <<
"1 => one " <<
"2 => two " <<
"3 => three " <<
"4 => four " <<
"5 => five\"\n";
std::cout << "contents: ";
for(auto& p : dict)
{
std::cout << " " << p.first << " => " << p.second << ' ';
}
std::cout << std::endl;
}
*****/
return 0;
}
这是原始的hash_table类文件:
//
// WSUHashTable.h
// CS3100Project05_HashCollections
#ifndef __CS3100Project05_HashCollections__WSUHashTable_H
#define __CS3100Project05_HashCollections__WSUHashTable_H
#include <vector>
#include <utility>
#include <algorithm>
#include <iterator>
#include <cassert>
//////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////
template <
typename elementT,
typename Hash = std::hash<elementT>
>
class WSUHashTable
{
private:
///////////////////////////////////////////////////////////////////
typedef elementT bucket_t;
///////////////////////////////////////////////////////////////////
static const std::size_t initialCapacity = (1 << 2);
constexpr static float maxLoadFactor = 0.73f;
///////////////////////////////////////////////////////////////////
std::size_t mSize; // Number of elements in table
std::vector<bucket_t> mStorage; // Storage for elements
std::vector<bool> mIsValidFlags;
public:
///////////////////////////////////////////////////////////////////
class iterator : public std::iterator<
std::input_iterator_tag, elementT>
{
friend class WSUHashTable<elementT, Hash>;
const WSUHashTable<elementT, Hash> *mHashTablePtr;
std::size_t mIndex;
////////////////////////////////////////////////////////////////
iterator(
const WSUHashTable<elementT, Hash> &hashTable,
std::size_t index = 0
) :
mHashTablePtr(&hashTable),
mIndex(index)
{
}
////////////////////////////////////////////////////////////////
std::size_t getIndex() const
{
return mIndex;
}
public:
////////////////////////////////////////////////////////////////
iterator(const iterator &other) :
mHashTablePtr(other.mHashTablePtr),
mIndex(other.mIndex)
{
}
////////////////////////////////////////////////////////////////
iterator& operator++()
{
++mIndex;
while(mIndex < mHashTablePtr->mIsValidFlags.size() &&
!mHashTablePtr->mIsValidFlags[mIndex])
{ // Skip over empty buckets
++mIndex;
}
return *this;
}
////////////////////////////////////////////////////////////////
iterator operator++(int)
{
const_iterator tmp(*this);
operator++();
return tmp;
}
////////////////////////////////////////////////////////////////
bool operator==(const iterator& rhs)
{
return mIndex == rhs.mIndex;
}
////////////////////////////////////////////////////////////////
bool operator!=(const iterator& rhs)
{
return mIndex != rhs.mIndex;
}
////////////////////////////////////////////////////////////////
const elementT &operator*()
{
return mHashTablePtr->mStorage[mIndex];
}
};
///////////////////////////////////////////////////////////////////
typedef const iterator const_iterator;
private:
typedef std::pair<const_iterator, bool> _findResult;
///////////////////////////////////////////////////////////////////
std::size_t _calculatedIndex(const elementT &element) const
{
return (Hash()(element) % mStorage.size());
}
///////////////////////////////////////////////////////////////////
// Returns a pair containing iterator to bucket where element
// should be and flag indicating whether it is there.
_findResult _find( const elementT &element ) const
{
std::size_t index = _calculatedIndex(element);
while(mIsValidFlags[index] &&
((mStorage[index] < element) || (element < mStorage[index])))
{ // Loop until element is found or an empty bucket is found
++index;
index %= mStorage.size();
}
return _findResult(
const_iterator(*this, index), mIsValidFlags[index]);
}
///////////////////////////////////////////////////////////////////
void _doubleCapacityAndRehash()
{
const std::size_t oldSize = mIsValidFlags.size();
// Save off mStorage by moving contents instead of copying
std::vector<bucket_t> oldStorage = std::move(mStorage);
std::vector<bool> oldIsValidFlags = std::move(mIsValidFlags);
// Replace mStorage and mIsValidFlags with empty storage with
// twice the size/capacity.
mStorage = std::move(std::vector<bucket_t>(oldSize * 2));
mIsValidFlags = std::move(std::vector<bool>(oldSize * 2));
// We are going to re-insert everything, so strat with size 0
mSize = 0;
for(std::size_t i = 0; i < oldSize; ++i)
{ // Insert values from all valid buckets in old storage
if(oldIsValidFlags[i])
{
insert(oldStorage[i]);
}
}
}
public:
///////////////////////////////////////////////////////////////////
WSUHashTable() :
mSize(0),
mStorage(initialCapacity),
mIsValidFlags(initialCapacity)
{
}
///////////////////////////////////////////////////////////////////
WSUHashTable(const WSUHashTable &other) :
mSize(other.mSize),
mStorage(other.mStorage),
mIsValidFlags(other.mIsValidFlags)
{
}
///////////////////////////////////////////////////////////////////
template< class InputIt >
WSUHashTable(InputIt first, InputIt last) :
mSize(0),
mStorage(initialCapacity),
mIsValidFlags(initialCapacity)
{
while(first != last)
{
insert(*first);
++first;
}
}
///////////////////////////////////////////////////////////////////
WSUHashTable(std::initializer_list<elementT> init) :
mSize(0),
mStorage(initialCapacity),
mIsValidFlags(initialCapacity)
{
insert(init);
}
///////////////////////////////////////////////////////////////////
std::size_t size() const
{
return mSize;
}
///////////////////////////////////////////////////////////////////
/// Inserts element(s) into the container, if the container doesn't
/// already contain an an equivalent element.
/// Returns a pair consisting of an iterator to the inserted
/// element (or to the element that prevented the insertion) and a
/// bool denoting whether the insertion took place.
std::pair<const_iterator, bool> insert( const elementT &element )
{
if(mSize > (maxLoadFactor * mStorage.size()))
{ // resize to make room for insertion
_doubleCapacityAndRehash();
}
_findResult result = _find(element);
if(result.second)
{ // element is present
return std::pair<const_iterator, bool>(result.first, false);
}
const std::size_t index = result.first.getIndex();
mStorage[index] = element;
mIsValidFlags[index] = true;
++mSize;
return std::pair<const_iterator, bool>(result.first, true);
}
///////////////////////////////////////////////////////////////////
/// Inserts element(s) into the container, if the container doesn't
/// already contain an an equivalent element.
/// Returns a pair consisting of an iterator to the inserted
/// element (or to the element that prevented the insertion) and a
/// bool denoting whether the insertion took place.
///
/// An && argumnet signals an "emplace" operation in C++11. The
/// value will be moved via std::move() instead of copied.
std::pair<const_iterator, bool> insert( elementT &&element )
{
if(mSize > (maxLoadFactor * mStorage.size()))
{ // resize to make room for insertion
_doubleCapacityAndRehash();
}
_findResult result = _find(element);
if(result.second)
{ // element is present
return std::pair<const_iterator, bool>(
result.first, false);
}
const std::size_t index = result.first.getIndex();
mStorage[index] = std::move(element);
mIsValidFlags[index] = true;
++mSize;
return std::pair<const_iterator, bool>(result.first, true);
}
///////////////////////////////////////////////////////////////////
void insert( std::initializer_list<elementT> ilist )
{
for(const elementT &element : ilist)
{
insert(element);
}
}
///////////////////////////////////////////////////////////////////
/// Returns iterator following the last removed element.
const_iterator erase( const_iterator pos )
{
const std::size_t index = pos.getIndex();
if(mIsValidFlags[index])
{ // element is present
mIsValidFlags[index] = false;
--mSize;
}
return ++iterator(pos);
}
///////////////////////////////////////////////////////////////////
// Returns the number of elements erased (it will be zero or one).
std::size_t erase(const elementT &element)
{
_findResult result = _find(element);
if(result.second)
{ // element is present
mIsValidFlags[result.first.getIndex()] = false;
--mSize;
return 1;
}
return 0;
}
///////////////////////////////////////////////////////////////////
const_iterator find( const elementT &element ) const
{
_findResult result = _find(element);
if(result.second)
{ // element was found
return result.first;
}
return end();
}
///////////////////////////////////////////////////////////////////
const_iterator begin() const
{
std::size_t index = 0;
while(index < mIsValidFlags.size() && !mIsValidFlags[index])
{ // Skip over empty buckets
++index;
}
return const_iterator(*this, index);
}
///////////////////////////////////////////////////////////////////
const_iterator end() const
{
return const_iterator(*this, mStorage.size());
}
};
#endif /* defined(__CS3100Project05_HashCollections__WSUHashTable_H) */
我知道hash_table文件很长,而且我对如何继续进行了一个不错的想法,因为hash_set实际上只需要在插入中实现一个搜索功能,以确保列表是唯一的,但并不是真的搞得一团糟使用哈希顺序或任何东西(我不确定如何实现哈希本身,但我假设继承将很好地排序),并且hash_map将允许空键和任何空值....但首先是必须编译。
这就是我目前作为我的hash_set类,只是试图获得一个使用父类的构造函数的正确类型(std :: string)的简单构造函数:
#ifndef __WSUHashSet__
#define __WSUHashSet__
#include <vector>
#include <utility>
#include <algorithm>
#include <iterator>
#include "WSUHashTable.h"
/*template<
typename elementT,
typename Hash = std::hash<elementT>
>*/
class WSUHashSet : public WSUHashTable<std::string> {
private:
public:
WSUHashSet(std::initializer_list<std::string> init) : WSUHashTable(init)
{
insert(init);
}
};
#endif //__WSUHashSet__
目前我得到了同样的错误:使用这个确切的代码它告诉我“WSUHashSet不是模板”,这很好,因为我的类很好,但很糟糕,因为我不能只编辑main.cpp而不是把它当作模板。
当我尝试将其设为模板时,如下所示:
#ifndef __WSUHashSet__
#define __WSUHashSet__
#include <vector>
#include <utility>
#include <algorithm>
#include <iterator>
#include "WSUHashTable.h"
template<
typename elementT,
typename Hash = std::hash<elementT>
>
class WSUHashSet<elementT> : public WSUHashTable<std::string> {
private:
public:
WSUHashSet<elementT>::WSUHashSet(std::initializer_list<std::string> init) : WSUHashTable(init)
{
insert(init);
}
};
#endif //__WSUHashSet__
我真的需要一些方向。我不能花更多的时间在这上面,因为它不是我唯一的课程,我觉得这应该是相当简单的。这个理论是有道理的,但实施让我觉得我一味地在圈内徘徊。
由于
编辑:实际的编译器错误是
WSUHashSet.h第19行:错误:WSUHashSet不是模板
显然,粘贴到代码块中会引起混淆。这是打破编译的实际行(代码块中的19):
WSUHashSet(std::initializer_list<std::string> init) : WSUHashTable(init)
{
insert(init);
}
答案 0 :(得分:0)
如果查看测试代码,您可以看到您创建的类型必须是模板,因为它们是针对特定元素类型实例化的:
WSUHashTable<int> example = {1, 2, 3, 4, 1};
WSUHashSet<double> doubleSet = { ...
您展示了制作模板的尝试:
template<
typename elementT,
typename Hash = std::hash<elementT>
>
class WSUHashSet<elementT> : public WSUHashTable<std::string> {
public:
WSUHashSet<elementT>::WSUHashSet(std::initializer_list<std::string> init) : WSUHashTable(init)
{
insert(init);
}
...
那不是那么远......试试:
template <typename elementT>
class WSUHashSet<elementT> : public WSUHashTable<elementT>
{
public:
WSUHashSet(std::initializer_list<std::string> init)
: WSUHashTable<elementT>(init)
{ }