我使用亚马逊的Java SDK创建了Amazon SQS和SNS logback appender。基本的appender使用同步Java API,但我也通过扩展ch.qos.logback.classic.AsyncAppender
类来创建两者的异步版本。
使用异步appender停止logback记录器上下文不能按预期工作。当上下文停止时,所有异步appender都会在退出之前尝试刷新剩余事件。该问题源自ch.qos.logback.core.AsyncAppenderBase#stop
方法,该方法中断了工作线程。当Amazon SDK仍处理排队事件并产生com.amazonaws.AbortedException
时,将触发中断。在我的测试中,AbortedException
发生在SDK处理来自API的响应时,因此实际的消息已经过去,但情况可能并非总是如此。
即使工作者仍应处理剩余的事件队列,是否打算使用logback中断工作线程?如果是这样,我如何处理由中断引起的AbortedException
?我可以覆盖整个停止方法并删除中断,但这需要复制粘贴大部分实现。
答案 0 :(得分:1)
我终于设法找到了一个解决方案,我认为这个解决方案不是最优的,而且远非简单,但它正在发挥作用。
我的第一次尝试是使用AWS SDK API的异步版本和提供的logback执行程序,因为使用内部执行程序,可以避免中断问题。但这并没有成功,因为工作队列是共享的,在这种情况下,队列必须是特定于appender才能正确停止它。所以我需要在每个appender上使用自己的执行器。
首先,我需要AWS客户端的执行程序。执行程序的问题是提供的线程工厂必须创建守护程序线程,否则如果使用了logback的JVM关闭挂钩,它将无限期地阻塞。
public static ExecutorService newExecutor(Appender<?> appender, int threadPoolSize) {
final String name = appender.getName();
return Executors.newFixedThreadPool(threadPoolSize, new ThreadFactory() {
private final AtomicInteger idx = new AtomicInteger(1);
@Override
public Thread newThread(Runnable r) {
Thread thread = new Thread(r);
thread.setName(name + "-" + idx.getAndIncrement());
thread.setDaemon(true);
return thread;
}
});
}
下一个问题是如何使用中断正确停止appender?这需要通过重试处理中断的异常,因为执行程序否则将跳过等待队列刷新。
public static void shutdown(Appender<?> appender, ExecutorService executor, long waitMillis) {
executor.shutdown();
boolean completed = awaitTermination(appender, executor, waitMillis);
if (!completed) {
appender.addWarn(format("Executor for %s did not shut down in %d milliseconds, " +
"logging events might have been discarded",
appender.getName(), waitMillis));
}
}
private static boolean awaitTermination(Appender<?> appender, ExecutorService executor, long waitMillis) {
long started = System.currentTimeMillis();
try {
return executor.awaitTermination(waitMillis, TimeUnit.MILLISECONDS);
} catch (InterruptedException ie1) {
// the worker loop is stopped by interrupt, but the remaining queue should still be handled
long waited = System.currentTimeMillis() - started;
if (waited < waitMillis) {
try {
return executor.awaitTermination(waitMillis - waited, TimeUnit.MILLISECONDS);
} catch (InterruptedException ie2) {
appender.addError(format("Shut down of executor for %s was interrupted",
appender.getName()));
}
}
Thread.currentThread().interrupt();
}
return false;
}
正常的logback appender预计会以同步方式工作,因此即使没有正确的关闭挂钩也不应该丢失日志记录事件。这是当前异步AWS SDK API调用的问题。我决定使用倒计时锁存器来提供阻塞appender行为。
public class LoggingEventHandler<REQUEST extends AmazonWebServiceRequest, RESULT> implements AsyncHandler<REQUEST, RESULT> {
private final ContextAware contextAware;
private final CountDownLatch latch;
private final String errorMessage;
public LoggingEventHandler(ContextAware contextAware, CountDownLatch latch, String errorMessage) {
this.contextAware = contextAware;
this.latch = latch;
this.errorMessage = errorMessage;
}
@Override
public void onError(Exception exception) {
contextAware.addWarn(errorMessage, exception);
latch.countDown();
}
@Override
public void onSuccess(REQUEST request, RESULT result) {
latch.countDown();
}
}
并处理等待锁定。
public static void awaitLatch(Appender<?> appender, CountDownLatch latch, long waitMillis) {
if (latch.getCount() > 0) {
try {
boolean completed = latch.await(waitMillis, TimeUnit.MILLISECONDS);
if (!completed) {
appender.addWarn(format("Appender '%s' did not complete sending event in %d milliseconds, " +
"the event might have been lost",
appender.getName(), waitMillis));
}
} catch (InterruptedException ex) {
appender.addWarn(format("Appender '%s' was interrupted, " +
"a logging event might have been lost or shutdown was initiated",
appender.getName()));
Thread.currentThread().interrupt();
}
}
}
然后全部捆绑在一起。以下示例是实际实现的简化版本,仅显示此问题的相关部分。
public class SqsAppender extends UnsynchronizedAppenderBase<ILoggingEvent> {
private AmazonSQSAsyncClient sqs;
@Override
public void start() {
sqs = new AmazonSQSAsyncClient(
getCredentials(),
getClientConfiguration(),
Executors.newFixedThreadPool(getThreadPoolSize())
);
super.start();
}
@Override
public void stop() {
super.stop();
if (sqs != null) {
AppenderExecutors.shutdown(this, sqs.getExecutorService(), getMaxFlushTime());
sqs.shutdown();
sqs = null;
}
}
@Override
protected void append(final ILoggingEvent eventObject) {
SendMessageRequest request = ...
CountDownLatch latch = new CountDownLatch(1);
sqs.sendMessageAsync(request, new LoggingEventHandler<SendMessageRequest, SendMessageResult>(this, latch, "Error"));
AppenderExecutors.awaitLatch(this, latch, getMaxFlushTime());
}
}
所有这些都是正确处理以下情况所必需的:
以上内容用于开源项目Logback extensions,我是其维护者。