我有一个df:
import pandas as pd
import numpy as np
import datetime as DT
import hmac
from geopy.geocoders import Nominatim
from geopy.distance import vincenty
df
city_name state_name county_name
0 WASHINGTON DC DIST OF COLUMBIA
1 WASHINGTON DC DIST OF COLUMBIA
2 WASHINGTON DC DIST OF COLUMBIA
3 WASHINGTON DC DIST OF COLUMBIA
4 WASHINGTON DC DIST OF COLUMBIA
5 WASHINGTON DC DIST OF COLUMBIA
6 WASHINGTON DC DIST OF COLUMBIA
7 WASHINGTON DC DIST OF COLUMBIA
8 WASHINGTON DC DIST OF COLUMBIA
9 WASHINGTON DC DIST OF COLUMBIA
我想获取下面数据框中任何一列的纬度和经度坐标。在处理各个位置的文档时,文档(http://geopy.readthedocs.org/en/latest/#data)非常简单。
>>> from geopy.geocoders import Nominatim
>>> geolocator = Nominatim()
>>> location = geolocator.geocode("175 5th Avenue NYC")
>>> print(location.address)
Flatiron Building, 175, 5th Avenue, Flatiron, New York, NYC, New York, ...
>>> print((location.latitude, location.longitude))
(40.7410861, -73.9896297241625)
>>> print(location.raw)
{'place_id': '9167009604', 'type': 'attraction', ...}
但是我想将函数应用于df中的每一行并创建一个新列。我尝试了以下
df['city_coord'] = geolocator.geocode(lambda row: 'state_name' (row))
但我认为我在代码中遗漏了一些东西,因为我得到以下内容:
city_name state_name county_name coordinates
0 WASHINGTON DC DIST OF COLUMBIA None
1 WASHINGTON DC DIST OF COLUMBIA None
2 WASHINGTON DC DIST OF COLUMBIA None
3 WASHINGTON DC DIST OF COLUMBIA None
4 WASHINGTON DC DIST OF COLUMBIA None
5 WASHINGTON DC DIST OF COLUMBIA None
6 WASHINGTON DC DIST OF COLUMBIA None
7 WASHINGTON DC DIST OF COLUMBIA None
8 WASHINGTON DC DIST OF COLUMBIA None
9 WASHINGTON DC DIST OF COLUMBIA None
我希望这样的东西可以使用Lambda函数:
city_name state_name county_name city_coord
0 WASHINGTON DC DIST OF COLUMBIA 38.8949549, -77.0366456
1 WASHINGTON DC DIST OF COLUMBIA 38.8949549, -77.0366456
2 WASHINGTON DC DIST OF COLUMBIA 38.8949549, -77.0366456
3 WASHINGTON DC DIST OF COLUMBIA 38.8949549, -77.0366456
4 WASHINGTON DC DIST OF COLUMBIA 38.8949549, -77.0366456
5 WASHINGTON DC DIST OF COLUMBIA 38.8949549, -77.0366456
6 WASHINGTON DC DIST OF COLUMBIA 38.8949549, -77.0366456
7 WASHINGTON DC DIST OF COLUMBIA 38.8949549, -77.0366456
8 WASHINGTON DC DIST OF COLUMBIA 38.8949549, -77.0366456
9 WASHINGTON DC DIST OF COLUMBIA 38.8949549, -77.0366456
10 GLYNCO GA GLYNN 31.2224512, -81.5101023
我感谢任何帮助。在我得到坐标后,我想要映射它们。任何推荐的映射坐标资源也非常受欢迎。感谢
答案 0 :(得分:12)
你可以调用apply
并在每一行上传递你想要执行的功能,如下所示:
In [9]:
geolocator = Nominatim()
df['city_coord'] = df['state_name'].apply(geolocator.geocode)
df
Out[9]:
city_name state_name county_name \
0 WASHINGTON DC DIST OF COLUMBIA
1 WASHINGTON DC DIST OF COLUMBIA
city_coord
0 (District of Columbia, United States of Americ...
1 (District of Columbia, United States of Americ...
然后,您可以访问纬度和经度属性:
In [16]:
df['city_coord'] = df['city_coord'].apply(lambda x: (x.latitude, x.longitude))
df
Out[16]:
city_name state_name county_name city_coord
0 WASHINGTON DC DIST OF COLUMBIA (38.8937154, -76.9877934586326)
1 WASHINGTON DC DIST OF COLUMBIA (38.8937154, -76.9877934586326)
或者通过拨打apply
两次在一个班轮中进行:
In [17]:
df['city_coord'] = df['state_name'].apply(geolocator.geocode).apply(lambda x: (x.latitude, x.longitude))
df
Out[17]:
city_name state_name county_name city_coord
0 WASHINGTON DC DIST OF COLUMBIA (38.8937154, -76.9877934586326)
1 WASHINGTON DC DIST OF COLUMBIA (38.8937154, -76.9877934586326)
此外,您的尝试geolocator.geocode(lambda row: 'state_name' (row))
没有做任何事情,因此为什么您的列中包含None
个值
修改强>
@leb在这里提出了一个有趣的观点,如果您有许多重复值,那么对每个唯一值进行地理编码会更加高效,然后添加:
In [38]:
states = df['state_name'].unique()
d = dict(zip(states, pd.Series(states).apply(geolocator.geocode).apply(lambda x: (x.latitude, x.longitude))))
d
Out[38]:
{'DC': (38.8937154, -76.9877934586326)}
In [40]:
df['city_coord'] = df['state_name'].map(d)
df
Out[40]:
city_name state_name county_name city_coord
0 WASHINGTON DC DIST OF COLUMBIA (38.8937154, -76.9877934586326)
1 WASHINGTON DC DIST OF COLUMBIA (38.8937154, -76.9877934586326)
所以上面使用unique
获取所有唯一值,从它们构造一个dict,然后调用map
来执行查找并添加coords,这比尝试地理编码行更有效-wise
答案 1 :(得分:4)
Upvote并接受@ EdChum的回答,我只想补充一点。他的方法很完美,但从个人经验来看,我想分享一些事情:
在处理地理编码时,如果您有多个正在重复的城市/州组合,那么多更快只发送1来进行地理编码,然后将其余部分复制到下面的其他行:
这对非常有帮助,可以通过两种方式完成大数据:
drop_duplicate
group_by
城市/州组合,请通过调用head(1)
对第一个行应用地理编码,然后复制到其余行。原因是每次你打电话给Nominatim时,即使你连续排队同一个城市/州,也存在一个小的延迟问题。当您的数据变大导致响应的大量延迟和可能的超时时,此小延迟会变得更糟。
同样,这一切都来自于个人处理它。如果它现在对您没有好处,请记住以备将来使用。