library(forecast)
library(magrittr)
dat <- ts(rep(1, 30), start = c(2015, 7), frequency = 12)
dat
# Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
#2015 1 1 1 1 1 1
#2016 1 1 1 1 1 1 1 1 1 1 1 1
#2017 1 1 1 1 1 1 1 1 1 1 1 1
dat %>% bizdays("NewYork")
# Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
#2015 21 23 23 1 21 22
#2016 22 21 23 22 21 21 21 22 23 22 22 21
#2017 22 20 23 21 20 22 21 22 23 23 22 22
#2018 21
似乎forecast::bizdays
在工作日的时间序列(2015年10月)中添加了一个奇怪的1,并将真实数据在未来一个月内转移。我做错了吗?
答案 0 :(得分:0)
问题似乎与第19行有关:
bizdays <- format(biz, format = "%Y %b")
和第32行:
num.days <- table(bizdays)
与您的数据相符:
bizdays
# [1] "2015 Jun" "2015 Jul" "2015 Jul" "2015 Jul" "2015 Jul" "2015 Jul"
# [7] "2015 Jul" "2015 Jul" "2015 Jul" "2015 Jul" "2015 Jul" "2015 Jul"
#...
#[643] "2017 Dec" "2017 Dec" "2017 Dec" "2017 Dec" "2017 Dec" "2017 Dec"
#[649] "2017 Dec" "2017 Dec" "2017 Dec" "2017 Dec" "2017 Dec" "2017 Dec"
(请注意,由于时区,第一个日期将转移到6月。)和
num.days
#bizdays
#2015 Aug 2015 Dec 2015 Jul 2015 Jun 2015 Nov 2015 Oct 2015 Sep 2016 Apr
# 21 23 23 1 21 22 22 21
#2016 Aug 2016 Dec 2016 Feb 2016 Jan 2016 Jul 2016 Jun 2016 Mar 2016 May
# 23 22 21 21 21 22 23 22
#2016 Nov 2016 Oct 2016 Sep 2017 Apr 2017 Aug 2017 Dec 2017 Feb 2017 Jan
# 22 21 22 20 23 21 20 22
#2017 Jul 2017 Jun 2017 Mar 2017 May 2017 Nov 2017 Oct 2017 Sep
# 21 22 23 23 22 22 21
哪个不对。
一种解决方法是编辑bizdays
函数并用
bizdays <- format(biz, format = "%Y-%m")
给出了:
# [1] "2015-06" "2015-07" "2015-07" "2015-07" "2015-07" "2015-07" "2015-07"
# [8] "2015-07" "2015-07" "2015-07" "2015-07" "2015-07" "2015-07" "2015-07"
#...
#[645] "2017-12" "2017-12" "2017-12" "2017-12" "2017-12" "2017-12" "2017-12"
#[652] "2017-12" "2017-12" "2017-12"
并且
numdays
#bizdays
#2015-06 2015-07 2015-08 2015-09 2015-10 2015-11 2015-12 2016-01 2016-02 2016-03
# 1 23 21 22 22 21 23 21 21 23
#2016-04 2016-05 2016-06 2016-07 2016-08 2016-09 2016-10 2016-11 2016-12 2017-01
# 21 22 22 21 23 22 21 22 22 22
#2017-02 2017-03 2017-04 2017-05 2017-06 2017-07 2017-08 2017-09 2017-10 2017-11
# 20 23 20 23 22 21 23 21 22 22
#2017-12
# 21
但第33行还存在一个问题,它没有考虑时移:
out <- ts(num.days, start = tsp(x)[1L], frequency = freq)
out
# Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
#2015 1 23 21 22 22 21
#2016 23 21 21 23 21 22 22 21 23 22 21 22
#2017 22 22 20 23 20 23 22 21 23 21 22 22
#2018 21