未发布的包:找不到未导出的功能

时间:2015-07-10 16:16:28

标签: r namespaces export package

我正在使用未发布的R包,并且遇到了其中一个函数的问题。具体来说,该函数尝试从未导出的包中调用另一个函数,并失败。

 ci.1.out.1 <- logistic.fit(ci.1, col = 4, rho.0 = 0.9, cor = TRUE,cores = 3)
Error in { : 
   task 1 failed - "could not find function "est.logistic.curve""

我尝试将该功能全局访问,但这不起作用。

 est.logistic.curve <- eyetracking:::est.logistic.curve
 ci.1.out.1 <- logistic.fit(ci.1, col = 4, rho.0 = 0.9, cor = TRUE,cores = 3)
Error in { : 
   task 1 failed - "could not find function "est.logistic.curve""

有什么建议吗?

编辑:

正如@BondedDust所建议的那样:

> getAnywhere(est.logistic.curve)
A single object matching ‘est.logistic.curve’ was found
It was found in the following places
  .GlobalEnv
  namespace:eyetracking

所以它在包中。

根据MrFlicks的要求:

function (data, col, diffs = FALSE, rho.0 = 0.9, cor = TRUE,
        cores = 1)
{    
if (!("Subject" %in% names(data)))
stop("data needs to include a 'Subject' column")
if (!("Time" %in% names(data)))
stop("data needs to include a 'Time' column")
if (!("Group" %in% names(data)))
stop("data needs to include a 'Group' column")
if (diffs && !("Curve" %in% names(data)))
stop("data needs to include a 'Curve' column if diffs=TRUE")
if (ncol(data) < col)
stop("specified col is too large for given data")
if (!is.numeric(data[, col]))
stop("specified column is not numeric")
if (cor && (rho.0 < 0 || rho.0 > 1))
stop("rho.0 should be in the interval [0,1]")
time.all <- sort(unique(data$Time))
groups <- unique(data$Group)
if (length(groups) != 2)
stop(paste("Expecting 2 unique groups. Actual number:",
       length(groups)))
id.nums.g1 <- unique(data$Subject[data$Group == groups[1]])
id.nums.g2 <- unique(data$Subject[data$Group == groups[2]])
N.g1 <- length(id.nums.g1)
N.g2 <- length(id.nums.g2)
N.time <- length(unique(data$Time))
N.sub1 <- N.g1
N.sub2 <- N.g2
coef.id1 <- matrix(NA, ncol = 4, nrow = N.sub1)
sdev.id1 <- matrix(NA, ncol = 4, nrow = N.sub1)
sigma.id1 <- matrix(NA, ncol = 1, nrow = N.sub1)
coef.id2 <- matrix(NA, ncol = 4, nrow = N.sub2)
sdev.id2 <- matrix(NA, ncol = 4, nrow = N.sub2)
sigma.id2 <- matrix(NA, ncol = 1, nrow = N.sub2)
coef.id3 <- matrix(NA, ncol = 4, nrow = N.sub1)
sdev.id3 <- matrix(NA, ncol = 4, nrow = N.sub1)
sigma.id3 <- matrix(NA, ncol = 1, nrow = N.sub1)
coef.id4 <- matrix(NA, ncol = 4, nrow = N.sub2)
sdev.id4 <- matrix(NA, ncol = 4, nrow = N.sub2)
sigma.id4 <- matrix(NA, ncol = 1, nrow = N.sub2)
curve.f <- function(mini, peak, slope, cross, t) mini + (peak - mini)/(1 + exp(4 * slope * (cross - t)/(peak - mini)))
R2.g1.1 <- R2.g1.2 <- numeric(N.g1)
R2.g2.1 <- R2.g2.2 <- numeric(N.g2)
cor.1 <- cor.3 <- rep(cor, N.sub1)
cor.2 <- cor.4 <- rep(cor, N.sub2)
if (cores == 1) {
for (id in 1:N.g1) {
if (diffs) {
y1id <- subset(data, data$Subject == id.nums.g1[id] &
             data$Group == groups[1] & data$Curve == 1)
}
else {
y1id <- subset(data, data$Subject == id.nums.g1[id] &
             data$Group == groups[1])
}
y.fix <- y1id[, col]
fit.curve <- est.logistic.curve(time.all, y.fix,
                      rho.0, cor = cor)
if (is.null(fit.curve$fit)) {
coef.id1[id, ] <- rep(NA, 4)
sdev.id1[id, ] <- rep(NA, 4)
sigma.id1[id, ] <- NA
cor.1[id] <- NA
R2.g1.1[id] <- NA
}
else {
cor.1[id] <- fit.curve$cor
fit.curve <- fit.curve$fit
coef.id1[id, ] <- coef(fit.curve)
sdev.id1[id, ] <- sqrt(diag(fit.curve$varBeta))
sigma.id1[id, ] <- fit.curve$sigma
SSY <- sum((y.fix - mean(y.fix))^2)
y.fit <- curve.f(coef(fit.curve)[1], coef(fit.curve)[2],
             coef(fit.curve)[3], coef(fit.curve)[4], time.all)
y.err <- y.fit - y.fix
SSE <- sum(y.err^2)
R2.g1.1[id] <- 1 - SSE/SSY
print(paste0("Group = ", groups[1], ", ID = ",
         id, ", Subject = ", id.nums.g1[id], ", Curve = 1, R2 = ",
         round(R2.g1.1[id], 3)))
}
if (diffs) {
y1id <- subset(data, data$Subject == id.nums.g1[id] &
             data$Group == groups[1] & data$Curve == 2)
y.fix <- y1id[, col]
fit.curve <- est.logistic.curve(time.all, y.fix,
                      rho.0, cor = cor)
if (is.null(fit.curve$fit)) {
coef.id3[id, ] <- rep(NA, 4)
sdev.id3[id, ] <- rep(NA, 4)
sigma.id3[id, ] <- NA
cor.3[id] <- NA
R2.g1.2[id] <- NA
}
else {
cor.3[id] <- fit.curve$cor
fit.curve <- fit.curve$fit
coef.id3[id, ] <- coef(fit.curve)
sdev.id3[id, ] <- sqrt(diag(fit.curve$varBeta))
sigma.id3[id, ] <- fit.curve$sigma
SSY <- sum((y.fix - mean(y.fix))^2)
y.fit <- curve.f(coef(fit.curve)[1], coef(fit.curve)[2],
             coef(fit.curve)[3], coef(fit.curve)[4], time.all)
y.err <- y.fit - y.fix
SSE <- sum(y.err^2)
R2.g1.2[id] <- 1 - SSE/SSY
print(paste0("Group = ", groups[1], ", ID = ",
         id, ", Subject = ", id.nums.g1[id], ", Curve = 2, R2 = ",
         round(R2.g1.2[id], 3)))
}
}
}
for (id in 1:N.g2) {
if (diffs) {
y2id <- subset(data, data$Subject == id.nums.g2[id] &
             data$Group == groups[2] & data$Curve == 1)
}
else {
y2id <- subset(data, data$Subject == id.nums.g2[id] &
             data$Group == groups[2])
}
y.fix <- y2id[, col]
fit.curve <- est.logistic.curve(time.all, y.fix,
                      rho.0, cor = cor)
if (is.null(fit.curve$fit)) {
coef.id2[id, ] <- rep(NA, 4)
sdev.id2[id, ] <- rep(NA, 4)
sigma.id2[id, ] <- NA
cor.2[id] <- NA
R2.g2.1[id] <- NA
}
else {
cor.2[id] <- fit.curve$cor
fit.curve <- fit.curve$fit
coef.id2[id, ] <- coef(fit.curve)
sdev.id2[id, ] <- sqrt(diag(fit.curve$varBeta))
sigma.id2[id, ] <- fit.curve$sigma
SSY <- sum((y.fix - mean(y.fix))^2)
y.fit <- curve.f(coef(fit.curve)[1], coef(fit.curve)[2],
             coef(fit.curve)[3], coef(fit.curve)[4], time.all)
y.err <- y.fit - y.fix
SSE <- sum(y.err^2)
R2.g2.1[id] <- 1 - SSE/SSY
print(paste0("Group = ", groups[2], ", ID = ",
         id, ", Subject = ", id.nums.g2[id], ", Curve = 1, R2 = ",
         round(R2.g2.1[id], 3)))
}
if (diffs) {
y2id <- subset(data, data$Subject == id.nums.g2[id] &
             data$Group == groups[2] & data$Curve == 2)
y.fix <- y2id[, col]
fit.curve <- est.logistic.curve(time.all, y.fix,
                      rho.0, cor = cor)
if (is.null(fit.curve$fit)) {
coef.id4[id, ] <- rep(NA, 4)
sdev.id4[id, ] <- rep(NA, 4)
sigma.id4[id, ] <- NA
cor.4[id] <- NA
R2.g2.2[id] <- NA
}
else {
cor.4[id] <- fit.curve$cor
fit.curve <- fit.curve$fit
coef.id4[id, ] <- coef(fit.curve)
sdev.id4[id, ] <- sqrt(diag(fit.curve$varBeta))
sigma.id4[id, ] <- fit.curve$sigma
SSY <- sum((y.fix - mean(y.fix))^2)
y.fit <- curve.f(coef(fit.curve)[1], coef(fit.curve)[2],
             coef(fit.curve)[3], coef(fit.curve)[4], time.all)
y.err <- y.fit - y.fix
SSE <- sum(y.err^2)
R2.g2.2[id] <- 1 - SSE/SSY
print(paste0("Group = ", groups[2], ", ID = ",
         id, ", Subject = ", id.nums.g2[id], ", Curve = 2, R2 = ",
         round(R2.g2.2[id], 3)))
}
}
}
}
else {
cl <- makeCluster(cores, type = "SOCK")
registerDoParallel(cl)
for.out <- foreach(id = 1:N.g1, .combine = rbind) %dopar%
{
if (diffs) {
y1id <- subset(data, data$Subject == id.nums.g1[id] &
             data$Group == groups[1] & data$Curve == 1)
}
else {
y1id <- subset(data, data$Subject == id.nums.g1[id] &
             data$Group == groups[1])
}
y.fix <- y1id[, col]
fit.curve <- est.logistic.curve(time.all, y.fix,
                      rho.0, cor = cor)
if (is.null(fit.curve$fit)) {
coef.1 <- rep(NA, 4)
sdev.1 <- rep(NA, 4)
sigma.1 <- NA
cor.temp.1 <- NA
R2.1 <- NA
}
else {
cor.temp.1 <- fit.curve$cor
fit.curve <- fit.curve$fit
coef.1 <- coef(fit.curve)
sdev.1 <- sqrt(diag(fit.curve$varBeta))
sigma.1 <- fit.curve$sigma
SSY <- sum((y.fix - mean(y.fix))^2)
y.fit <- curve.f(coef(fit.curve)[1], coef(fit.curve)[2],
             coef(fit.curve)[3], coef(fit.curve)[4], time.all)
y.err <- y.fit - y.fix
SSE <- sum(y.err^2)
R2.1 <- 1 - SSE/SSY
}
if (diffs) {
y1id <- subset(data, data$Subject == id.nums.g1[id] &
             data$Group == groups[1] & data$Curve == 2)
y.fix <- y1id[, col]
fit.curve <- est.logistic.curve(time.all, y.fix,
                      rho.0, cor = cor)
if (is.null(fit.curve$fit)) {
coef.2 <- rep(NA, 4)
sdev.2 <- rep(NA, 4)
sigma.2 <- NA
cor.temp.2 <- NA
R2.2 <- NA
}
else {
cor.temp.2 <- fit.curve$cor
fit.curve <- fit.curve$fit
coef.2 <- coef(fit.curve)
sdev.2 <- sqrt(diag(fit.curve$varBeta))
sigma.2 <- fit.curve$sigma
SSY <- sum((y.fix - mean(y.fix))^2)
y.fit <- curve.f(coef(fit.curve)[1], coef(fit.curve)[2],
             coef(fit.curve)[3], coef(fit.curve)[4],
             time.all)
y.err <- y.fit - y.fix
SSE <- sum(y.err^2)
R2.2 <- 1 - SSE/SSY
}
}
if (diffs) {
out <- c(coef.1, sdev.1, sigma.1, R2.1, cor.temp.1,
         coef.2, sdev.2, sigma.2, R2.2, cor.temp.2)
}
else {
out <- c(coef.1, sdev.1, sigma.1, R2.1, cor.temp.1)
}
out
}
coef.id1 <- for.out[, 1:4]
sdev.id1 <- for.out[, 5:8]
sigma.id1[, 1] <- as.numeric(for.out[, 9])
R2.g1.1 <- as.numeric(for.out[, 10])
cor.1 <- as.numeric(for.out[, 11])
if (diffs) {
coef.id3 <- for.out[, 12:15]
sdev.id3 <- for.out[, 16:19]
sigma.id3[, 1] <- as.numeric(for.out[, 20])
R2.g1.2 <- as.numeric(for.out[, 21])
cor.3 <- as.numeric(for.out[, 22])
}
for.out <- foreach(id = 1:N.g2, .combine = rbind) %dopar%
{
if (diffs) {
y2id <- subset(data, data$Subject == id.nums.g2[id] &
             data$Group == groups[2] & data$Curve == 1)
}
else {
y2id <- subset(data, data$Subject == id.nums.g2[id] &
             data$Group == groups[2])
}
y.fix <- y2id[, col]
fit.curve <- est.logistic.curve(time.all, y.fix,
                      rho.0, cor = cor)
if (is.null(fit.curve$fit)) {
coef.1 <- rep(NA, 4)
sdev.1 <- rep(NA, 4)
sigma.1 <- NA
cor.temp.1 <- NA
R2.1 <- NA
}
else {
cor.temp.1 <- fit.curve$cor
fit.curve <- fit.curve$fit
coef.1 <- coef(fit.curve)
sdev.1 <- sqrt(diag(fit.curve$varBeta))
sigma.1 <- fit.curve$sigma
SSY <- sum((y.fix - mean(y.fix))^2)
y.fit <- curve.f(coef(fit.curve)[1], coef(fit.curve)[2],
             coef(fit.curve)[3], coef(fit.curve)[4], time.all)
y.err <- y.fit - y.fix
SSE <- sum(y.err^2)
R2.1 <- 1 - SSE/SSY
}
if (diffs) {
y2id <- subset(data, data$Subject == id.nums.g2[id] &
             data$Group == groups[2] & data$Curve == 2)
y.fix <- y2id[, col]
fit.curve <- est.logistic.curve(time.all, y.fix,
                      rho.0, cor = cor)
if (is.null(fit.curve$fit)) {
coef.2 <- rep(NA, 4)
sdev.2 <- rep(NA, 4)
sigma.2 <- NA
cor.temp.2 <- NA
R2.2 <- NA
}
else {
cor.temp.2 <- fit.curve$cor
fit.curve <- fit.curve$fit
coef.2 <- coef(fit.curve)
sdev.2 <- sqrt(diag(fit.curve$varBeta))
sigma.2 <- fit.curve$sigma
SSY <- sum((y.fix - mean(y.fix))^2)
y.fit <- curve.f(coef(fit.curve)[1], coef(fit.curve)[2],
             coef(fit.curve)[3], coef(fit.curve)[4],
             time.all)
y.err <- y.fit - y.fix
SSE <- sum(y.err^2)
R2.2 <- 1 - SSE/SSY
}
}
if (diffs) {
out <- c(coef.1, sdev.1, sigma.1, R2.1, cor.temp.1,
         coef.2, sdev.2, sigma.2, R2.2, cor.temp.2)
}
else {
out <- c(coef.1, sdev.1, sigma.1, R2.1, cor.temp.1)
}
out
}
coef.id2 <- for.out[, 1:4]
sdev.id2 <- for.out[, 5:8]
sigma.id2[, 1] <- as.numeric(for.out[, 9])
R2.g2.1 <- as.numeric(for.out[, 10])
cor.2 <- as.numeric(for.out[, 11])
if (diffs) {
coef.id4 <- for.out[, 12:15]
sdev.id4 <- for.out[, 16:19]
sigma.id4[, 1] <- as.numeric(for.out[, 20])
R2.g2.2 <- as.numeric(for.out[, 21])
cor.4 <- as.numeric(for.out[, 22])
}
stopCluster(cl)
}
nofit <- sum(is.na(cor.1)) + sum(is.na(cor.2)) + sum(is.na(cor.3)) +
sum(is.na(cor.4))
if (nofit > 0)
warning(paste("There were", nofit, "eyetracks that could not be fit"))
if (cor == TRUE) {
nocor <- sum(!cor.1, na.rm = TRUE) + sum(!cor.2, na.rm = TRUE) +
sum(!cor.3, na.rm = TRUE) + sum(!cor.4, na.rm = TRUE)
if (nocor > 0)
warning(paste("There were", nocor, "eyetracks that were fit without the AR1 assumption"))
}
ar1.good <- sum(c(R2.g1.1, R2.g1.2, R2.g2.1, R2.g2.2) >=
         0.95 & c(cor.1, cor.3, cor.2, cor.4), na.rm = TRUE)
ar1.ok <- sum(c(R2.g1.1, R2.g1.2, R2.g2.1, R2.g2.2) < 0.95 &
           c(R2.g1.1, R2.g1.2, R2.g2.1, R2.g2.2) >= 0.8 & c(cor.1,
                                cor.3, cor.2, cor.4), na.rm = TRUE)
ar1.bad <- sum(c(R2.g1.1, R2.g1.2, R2.g2.1, R2.g2.2) < 0.8 &
        c(R2.g1.1, R2.g1.2, R2.g2.1, R2.g2.2) > 0 & c(cor.1,
                                  cor.3, cor.2, cor.4), na.rm = TRUE)
nonar1.good <- sum(c(R2.g1.1, R2.g1.2, R2.g2.1, R2.g2.2) >=
            0.95 & !c(cor.1, cor.3, cor.2, cor.4), na.rm = TRUE)
nonar1.ok <- sum(c(R2.g1.1, R2.g1.2, R2.g2.1, R2.g2.2) <
          0.95 & c(R2.g1.1, R2.g1.2, R2.g2.1, R2.g2.2) >= 0.8 &
          !c(cor.1, cor.3, cor.2, cor.4), na.rm = TRUE)
nonar1.bad <- sum(c(R2.g1.1, R2.g1.2, R2.g2.1, R2.g2.2) <
           0.8 & c(R2.g1.1, R2.g1.2, R2.g2.1, R2.g2.2) > 0 & !c(cor.1, cor.3, cor.2, cor.4), na.rm = TRUE)
if (diffs) {
nofit <- sum(is.na(c(cor.1, cor.3, cor.2, cor.4)))
}
else {
nofit <- sum(is.na(c(cor.1, cor.2)))
}
cat("########################################\n")
cat("############### FITS ###################\n")
cat("########################################\n")
cat(paste("AR1,       R2>=0.95   --", ar1.good, "\n"))
cat(paste("AR1,     0.95>R2>=0.8 --", ar1.ok, "\n"))
cat(paste("AR1,       0.8>R2     --", ar1.bad, "\n"))
cat(paste("Non-AR1,   R2>=0.95   --", nonar1.good, "\n"))
cat(paste("Non-AR1, 0.95>R2>=0.8 --", nonar1.ok, "\n"))
cat(paste("Non-AR1,   0.8>R2     --", nonar1.bad, "\n"))
cat(paste("No Fit                --", nofit, "\n"))
cat("########################################\n\n")
cat("Next Steps: Check goodness of fits (ests.plot, subs.plot),\n\trefit bad fits (logistic.refit),\n\tbootstrap and t-test (logistic.boot)\n\n")
list(data = data, col = col, rho.0 = rho.0, N.time = N.time,
      N.sub1 = N.sub1, N.sub2 = N.sub2, coef.id1 = coef.id1,
      coef.id2 = coef.id2, coef.id3 = coef.id3, coef.id4 = coef.id4,
      sdev.id1 = sdev.id1, sdev.id2 = sdev.id2, sdev.id3 = sdev.id3,
      sdev.id4 = sdev.id4, sigma.id1 = sigma.id1, sigma.id2 = sigma.id2,
      sigma.id3 = sigma.id3, sigma.id4 = sigma.id4, id.nums.g1 = id.nums.g1,
      id.nums.g2 = id.nums.g2, groups = groups, time.all = time.all,
      N.g1 = N.g1, N.g2 = N.g2, model = "logistic", diffs = diffs,
      cor = cor, cor.1 = cor.1, cor.2 = cor.2, cor.3 = cor.3,
      cor.4 = cor.4, R2.g1.1 = R2.g1.1, R2.g1.2 = R2.g1.2,
      R2.g2.1 = R2.g2.1, R2.g2.2 = R2.g2.2)
}
<environment: namespace:eyetracking>

和est.logistic.curve的来源

function (time, fixations, rho, params = NULL, cor = TRUE) 
{
    if (is.null(params)) {
        mini <- find.mini(time, fixations)
        peak <- find.peak(time, fixations)
        slope <- find.slope(time, fixations)
        cross <- find.cross(time, fixations)
    }
    else {
        mini <- params[1]
        peak <- params[2]
        slope <- params[3]
        cross <- params[4]
    }
    if (cor) {
        fit.curve <- tryCatch(gnls(fixations ~ mini + (peak - 
            mini)/(1 + exp(4 * slope * (cross - (time))/(peak - 
            mini))), start = c(mini = mini, peak = peak, slope = slope, 
            cross = cross), correlation = corAR1(rho)), error = function(e) NULL)
        if (is.null(fit.curve)) 
            cor <- FALSE
    }
    if (!cor) {
        fit.curve <- tryCatch(gnls(fixations ~ mini + (peak - 
            mini)/(1 + exp(4 * slope * (cross - (time))/(peak - 
            mini))), start = c(mini = mini, peak = peak, slope = slope, 
            cross = cross)), error = function(e) NULL)
    }
    list(fit = fit.curve, cor = cor)
}
<environment: namespace:eyetracking>

1 个答案:

答案 0 :(得分:3)

如果您加载了包,您应该能够在NAMESPACE中判断是否确实存在这样的功能:

getAnywhere(est.logistic.curve)

如果不存在,那么您需要联系作者。

好的,第二个理论,错误消息和核心参数表明您(或包作者)正在使用并行流程,并且本地任务环境没有将该函数导出到它们。

问题可能在于此部分(如果cores = 1则会跳过):

...
registerDoParallel(cl)
for.out <- foreach(id = 1:N.g1, .combine = rbind) %dopar%
....

您可能希望在代码的该部分中为.packages="eyetracking"调用添加foreach参数。