如何将std::string
转换为无符号整数,并允许非常长的输入?
例如,5000000000
的输入应返回705032704
(5000000000 mod 2^32
),假设此处无符号为32位。 9999999999999999999999999999
的输入应返回268435455
。
std::stoi
和朋友在提供如此大的号码时会给std::out_of_range
。
如果给出这样的输入,使用std::istringstream::operator>>(unsigned)
就会失败。
是否有任何函数可以将字符串转换为整数,而不会在大输入的情况下挽救? (如果可能的话,我宁愿避免自己写一个。)
答案 0 :(得分:3)
您可以自己编写一个函数:
unsigned int get_uint(const std::string &s) {
unsigned int r = 0U;
for(auto c : s) {
assert(std::isdigit(c));
r = r * 10 + (c - '0');
}
return r;
}
这是有效的,因为无符号溢出在C ++中用作模运算。
从3.9.1 / 4
无符号整数,声明未签名,应遵守 算术模2 ^ n其中n是值中的位数 表示特定大小的整数
答案 1 :(得分:0)
与Python和Java不同,C ++中没有对bigint的标准支持。但是有许多库可以为您提供所需的支持。以下是C ++中bigint的一个实现,我有时会在竞争性编程中使用它:
#include <vector>
#include <cstdlib>
#include <iostream>
#include <iomanip>
#include <string>
#include <ctime>
using namespace std;
const int base = 1000000000;
const int base_digits = 9;
struct bigint
{
vector<int> a;
int sign;
bigint() :
sign(1)
{
}
bigint(long long v)
{
*this = v;
}
bigint(const string &s)
{
read(s);
}
void operator=(const bigint &v)
{
sign = v.sign;
a = v.a;
}
void operator=(long long v)
{
sign = 1;
if (v < 0)
sign = -1, v = -v;
for (; v > 0; v = v / base)
a.push_back(v % base);
}
bigint operator+(const bigint &v) const
{
if (sign == v.sign)
{
bigint res = v;
for (int i = 0, carry = 0; i < (int) max(a.size(), v.a.size()) || carry; ++i)
{
if (i == (int) res.a.size())
res.a.push_back(0);
res.a[i] += carry + (i < (int) a.size() ? a[i] : 0);
carry = res.a[i] >= base;
if (carry)
res.a[i] -= base;
}
return res;
}
return *this - (-v);
}
bigint operator-(const bigint &v) const
{
if (sign == v.sign)
{
if (abs() >= v.abs())
{
bigint res = *this;
for (int i = 0, carry = 0; i < (int) v.a.size() || carry; ++i)
{
res.a[i] -= carry + (i < (int) v.a.size() ? v.a[i] : 0);
carry = res.a[i] < 0;
if (carry)
res.a[i] += base;
}
res.trim();
return res;
}
return -(v - *this);
}
return *this + (-v);
}
void operator*=(int v)
{
if (v < 0)
sign = -sign, v = -v;
for (int i = 0, carry = 0; i < (int) a.size() || carry; ++i)
{
if (i == (int) a.size())
a.push_back(0);
long long cur = a[i] * (long long) v + carry;
carry = (int) (cur / base);
a[i] = (int) (cur % base);
}
trim();
}
bigint operator*(int v) const
{
bigint res = *this;
res *= v;
return res;
}
friend pair<bigint, bigint> divmod(const bigint &a1, const bigint &b1)
{
int norm = base / (b1.a.back() + 1);
bigint a = a1.abs() * norm;
bigint b = b1.abs() * norm;
bigint q, r;
q.a.resize(a.a.size());
for (int i = a.a.size() - 1; i >= 0; i--)
{
r *= base;
r += a.a[i];
int s1 = r.a.size() <= b.a.size() ? 0 : r.a[b.a.size()];
int s2 = r.a.size() <= b.a.size() - 1 ? 0 : r.a[b.a.size() - 1];
int d = ((long long) base * s1 + s2) / b.a.back();
r -= b * d;
while (r < 0)
r += b, --d;
q.a[i] = d;
}
q.sign = a1.sign * b1.sign;
r.sign = a1.sign;
q.trim();
r.trim();
return make_pair(q, r / norm);
}
bigint operator/(const bigint &v) const
{
return divmod(*this, v).first;
}
bigint operator%(const bigint &v) const
{
return divmod(*this, v).second;
}
void operator/=(int v)
{
if (v < 0)
sign = -sign, v = -v;
for (int i = (int) a.size() - 1, rem = 0; i >= 0; --i)
{
long long cur = a[i] + rem * (long long) base;
a[i] = (int) (cur / v);
rem = (int) (cur % v);
}
trim();
}
bigint operator/(int v) const
{
bigint res = *this;
res /= v;
return res;
}
int operator%(int v) const
{
if (v < 0)
v = -v;
int m = 0;
for (int i = a.size() - 1; i >= 0; --i)
m = (a[i] + m * (long long) base) % v;
return m * sign;
}
void operator+=(const bigint &v)
{
*this = *this + v;
}
void operator-=(const bigint &v)
{
*this = *this - v;
}
void operator*=(const bigint &v)
{
*this = *this * v;
}
void operator/=(const bigint &v)
{
*this = *this / v;
}
bool operator<(const bigint &v) const
{
if (sign != v.sign)
return sign < v.sign;
if (a.size() != v.a.size())
return a.size() * sign < v.a.size() * v.sign;
for (int i = a.size() - 1; i >= 0; i--)
if (a[i] != v.a[i])
return a[i] * sign < v.a[i] * sign;
return false;
}
bool operator>(const bigint &v) const
{
return v < *this;
}
bool operator<=(const bigint &v) const
{
return !(v < *this);
}
bool operator>=(const bigint &v) const
{
return !(*this < v);
}
bool operator==(const bigint &v) const
{
return !(*this < v) && !(v < *this);
}
bool operator!=(const bigint &v) const
{
return *this < v || v < *this;
}
void trim()
{
while (!a.empty() && !a.back())
a.pop_back();
if (a.empty())
sign = 1;
}
bool isZero() const
{
return a.empty() || (a.size() == 1 && !a[0]);
}
bigint operator-() const
{
bigint res = *this;
res.sign = -sign;
return res;
}
bigint abs() const
{
bigint res = *this;
res.sign *= res.sign;
return res;
}
long long longValue() const
{
long long res = 0;
for (int i = a.size() - 1; i >= 0; i--)
res = res * base + a[i];
return res * sign;
}
friend bigint gcd(const bigint &a, const bigint &b)
{
return b.isZero() ? a : gcd(b, a % b);
}
friend bigint lcm(const bigint &a, const bigint &b)
{
return a / gcd(a, b) * b;
}
void read(const string &s)
{
sign = 1;
a.clear();
int pos = 0;
while (pos < (int) s.size() && (s[pos] == '-' || s[pos] == '+'))
{
if (s[pos] == '-')
sign = -sign;
++pos;
}
for (int i = s.size() - 1; i >= pos; i -= base_digits)
{
int x = 0;
for (int j = max(pos, i - base_digits + 1); j <= i; j++)
x = x * 10 + s[j] - '0';
a.push_back(x);
}
trim();
}
friend istream& operator>>(istream &stream, bigint &v)
{
string s;
stream >> s;
v.read(s);
return stream;
}
friend ostream& operator<<(ostream &stream, const bigint &v)
{
if (v.sign == -1)
stream << '-';
stream << (v.a.empty() ? 0 : v.a.back());
for (int i = (int) v.a.size() - 2; i >= 0; --i)
stream << setw(base_digits) << setfill('0') << v.a[i];
return stream;
}
static vector<int> convert_base(const vector<int> &a, int old_digits, int new_digits)
{
vector<long long> p(max(old_digits, new_digits) + 1);
p[0] = 1;
for (int i = 1; i < (int) p.size(); i++)
p[i] = p[i - 1] * 10;
vector<int> res;
long long cur = 0;
int cur_digits = 0;
for (int i = 0; i < (int) a.size(); i++)
{
cur += a[i] * p[cur_digits];
cur_digits += old_digits;
while (cur_digits >= new_digits)
{
res.push_back(int(cur % p[new_digits]));
cur /= p[new_digits];
cur_digits -= new_digits;
}
}
res.push_back((int) cur);
while (!res.empty() && !res.back())
res.pop_back();
return res;
}
typedef vector<long long> vll;
static vll karatsubaMultiply(const vll &a, const vll &b)
{
int n = a.size();
vll res(n + n);
if (n <= 32)
{
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
res[i + j] += a[i] * b[j];
return res;
}
int k = n >> 1;
vll a1(a.begin(), a.begin() + k);
vll a2(a.begin() + k, a.end());
vll b1(b.begin(), b.begin() + k);
vll b2(b.begin() + k, b.end());
vll a1b1 = karatsubaMultiply(a1, b1);
vll a2b2 = karatsubaMultiply(a2, b2);
for (int i = 0; i < k; i++)
a2[i] += a1[i];
for (int i = 0; i < k; i++)
b2[i] += b1[i];
vll r = karatsubaMultiply(a2, b2);
for (int i = 0; i < (int) a1b1.size(); i++)
r[i] -= a1b1[i];
for (int i = 0; i < (int) a2b2.size(); i++)
r[i] -= a2b2[i];
for (int i = 0; i < (int) r.size(); i++)
res[i + k] += r[i];
for (int i = 0; i < (int) a1b1.size(); i++)
res[i] += a1b1[i];
for (int i = 0; i < (int) a2b2.size(); i++)
res[i + n] += a2b2[i];
return res;
}
bigint operator*(const bigint &v) const
{
vector<int> a6 = convert_base(this->a, base_digits, 6);
vector<int> b6 = convert_base(v.a, base_digits, 6);
vll a(a6.begin(), a6.end());
vll b(b6.begin(), b6.end());
while (a.size() < b.size())
a.push_back(0);
while (b.size() < a.size())
b.push_back(0);
while (a.size() & (a.size() - 1))
a.push_back(0), b.push_back(0);
vll c = karatsubaMultiply(a, b);
bigint res;
res.sign = sign * v.sign;
for (int i = 0, carry = 0; i < (int) c.size(); i++)
{
long long cur = c[i] + carry;
res.a.push_back((int) (cur % 1000000));
carry = (int) (cur / 1000000);
}
res.a = convert_base(res.a, 6, base_digits);
res.trim();
return res;
}
};
int main()
{
bigint a("99999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999");
bigint b("19999999999999999999999999999999999999999999999999999999999999999999999999999999999999998");
cout << a * b << endl;
cout << a / b << endl;
string sa, sb;
for (int i = 0; i < 100000; i++)
sa += i % 10 + '0';
for (int i = 0; i < 20000; i++)
sb += i % 10 + '0';
a = bigint(sa);
b = bigint(sb);
clock_t start = clock();
bigint c = a / b;
fprintf(stderr, "time=%.3lfsec\n", 0.001 * (clock() - start));
return 0;
}
答案 2 :(得分:0)
如果适合您的范围,请使用std::stoull
,否则请使用C ++中的BigInteger库
unsigned long long stoull(const std::string & str, std::size_t * pos = 0, int base = 10);
一个不错的bigint库是https://mattmccutchen.net/bigint/。