在闪亮的应用程序中旋转3D散点图

时间:2015-07-09 19:58:56

标签: r 3d shiny plotly

我正在编写一个新的Shiny应用程序,我想使用plot3d()绘制一个旋转的3D散点图,如下所示:

# Spinning 3d Scatterplot
library(rgl)
plot3d(wt, disp, mpg, col="red", size=3)

我试图使用类似于此处所做的事情: shinyRGL examples,其中包含选项renderWebGL({})webGLOutput()。但我一直收到这个错误:

  

匹配错误(x,table,nomatch = 0L):     '匹配'需要矢量参数

我无法弄明白为什么。

这是我现在使用的数据集的一个例子:

n=100
taxi <- data.frame(conversion=c(rep(1,20),rep(0,80)),
         day = sample(1:7, n, TRUE),
         hour = sample(0:23,n, TRUE),
         source= sample(1:4, n, TRUE),
         service= sample(1:5, n, TRUE),
         relevancy= sample(1:4, n, TRUE),
         tollfree= sample(c(0,1), n, TRUE),
         distance= sample(0:15, n, TRUE),
         similarity= sample(seq(0,1,0.01), n, TRUE),
         simi.names= sample(c('[0,0.25)','[0.25,0.5)','[0.5,0.75)','[0.75,1]'), n, TRUE),
         dist.names= sample(c('[0,1)','[1,2)','[2,3)','[3,4)','[4,15]'), n, TRUE),
         week= sample(1:7, n, TRUE),
         rel= sample(c(1,4), n, TRUE))

我有这个用于ui.R:

shinyUI(navbarPage("",
               tabPanel("Data",
                        sidebarLayout(
                          sidebarPanel(
                            selectInput("dataset", h5("Choose a dataset:"), choices = c("taxicabs", "liquor stores")),
                            radioButtons("discrete", h5("I want to discretize:"), choices = c("similarity", "distance","similarity & distance","none"),
                                         inline=F, selected = "none"),
                            radioButtons("agg", h5("I want to aggregate:"), choices = c("day in weekdays/weekends", "relevancy in binary relevancy",
                                                                                        "day in weekdays/weekends &  relevancy in binary relevancy","none"),
                                         inline=F, selected = "none"),
                            checkboxGroupInput("checkGroup", label = h5("Dataset Features:"), 
                                               choices = c("day","hour","source","service","relevancy","tollfree","distance","similarity"), inline = F,
                                               selected = c("day","hour","source","service","relevancy","tollfree","distance","similarity"))
                          ),
                          mainPanel(
                            numericInput("obs", label = h5("Number of observations to view"), 15, min = 10, max = 20, step = 1),
                            tableOutput("view"),
                            tableOutput("var")
                          )
                        )
               ),
               tabPanel("Model",
                        h3("Best logistic model with logit link and variable selection via stepwise AIC "),
                        verbatimTextOutput("model"),
                        downloadButton('downloadReport',label = 'Download coefficients'),
                        h3("MSE"),
                        tableOutput("measures"),
                        h3("Response fit"),
                        plotOutput('plot')
               ),
               tabPanel("Visualize Fit on Features",
                        fluidRow(                           
                          column(4, selectInput("featureDisplay_x", 
                                                label = h3("X-Axis Feature"), 
                                                choices = NULL)),
                          column(4, selectInput("featureDisplay_y", 
                                                label = h3("Y-Axis Feature"), 
                                                choices = NULL)) 
                        ),
                        fluidRow(
                          column(4,
                                 plotOutput("distPlotA")
                          ),                              
                          column(4,
                                 plotOutput("distPlotB")      
                          ),
                          column(4,
                                 webGLOutput("webGL")
                          )
                        )
               )

))

,这适用于server.R

options(rgl.useNULL=TRUE)
library(shiny)
library(reshape2)
library(ggplot2)
library(dplyr)
library(rgl)
library(shinyRGL)
source("webGLParser.R")

shinyServer(function(input, output, session) {
datasetInput <- reactive({
switch(input$dataset,
       "taxicabs" = taxi,
       "liquor stores" = liq)
})

observe({
choices <- c("day", "hour", "source", "service", "relevancy", "tollfree", "distance", "similarity")
if (grepl("day in weekdays/weekends", input$agg))  {
  choices[1] <- "week"
}
if (grepl("relevancy", input$agg))  {
  choices[5] <- "rel"
}      
if (grepl("similarity", input$discrete)) {
  choices[8] <- "simi.names"
}
if (grepl("distance", input$discrete)) {
  choices[7] <- "dist.names"
}
updateCheckboxGroupInput(session, "checkGroup", choices = choices,
                         inline = F, selected = choices)
})


datasetagg <- reactive({ 
cg <- input$checkGroup
dis <- input$discrete
cg_not_d_or_s <- cg[!(cg %in% c("distance", "similarity"))]
if(input$discrete == "similarity & distance") {
  #all discrete 
  right_join(
    datasetInput() %>%
      select_(.dots = cg) %>%
      group_by_(.dots = cg) %>%
      summarise(count=n()),
    datasetInput() %>%
      filter(conversion==1) %>%
      select_(.dots = cg) %>%
      count_(vars = cg)
  ) %>% mutate(prop.conv = n/count)
} else if(input$discrete == "distance") {
  cg_not_dis <- cg[cg != "similarity"]
  # one continuous
  right_join(
    datasetInput() %>%
      group_by_(.dots = cg_not_dis) %>%
      summarise_(.dots = setNames(c("mean(similarity)", "n()"),
                                  c("simi.mean", "count"))) %>%
      select_(.dots = c(cg_not_dis, "simi.mean", "count")),
    datasetInput() %>%
      filter(conversion==1) %>%
      select_(.dots = cg_not_dis) %>%
      count_(vars = cg_not_dis)
  ) %>% mutate(prop.conv = n/count)
} else if(input$discrete == "similarity") {
  cg_not_dis <- cg[cg != "distance"]
  # one continuous
  right_join(
    datasetInput() %>%
      group_by_(.dots = cg_not_dis) %>%
      summarise_(.dots = setNames(c("mean(distance)", "n()"),
                                  c("dist.mean", "count"))) %>%
      select_(.dots = c(cg_not_dis, "dist.mean", "count")),
    datasetInput() %>%
      filter(conversion==1) %>%
      select_(.dots = cg_not_dis) %>%
      count_(vars = cg_not_dis)
  ) %>% mutate(prop.conv = n/count)
} else if(input$discrete == "none") {
  # two  
  right_join(
    datasetInput() %>%
      select_(.dots = cg) %>%
      group_by_(.dots = cg_not_d_or_s) %>%
      summarise(dist.mean=mean(distance), simi.mean=mean(similarity), count=n()),
    datasetInput() %>%
      filter(conversion==1) %>%
      select_(.dots = cg) %>%
      count_(vars = cg_not_d_or_s)
  ) %>% mutate(prop.conv = n/count)
}
})

# head of the table  
output$view <- renderTable({
head(datasetagg(), n = input$obs)
})

output$var <- renderPrint({
if(sum(sapply(droplevels(datasetagg()),function(x)length(levels(x)))==1)==0) {
  paste(' *** ' ) 
} else if (sum(sapply(droplevels(datasetagg()),function(x)length(levels(x)))==1)>=1){
  paste('***Warning: ' ,names(which(sapply(droplevels(datasetagg()),function(x)length(levels(x)))==1)), 'have just 1 level and should not be selected fo the model.' )
}  
})

name <- reactive({ 
names.datasetagg <- names(datasetagg())
names.datasetagg[names.datasetagg == 'hour'] <- paste('I((0.2034*sin(-0.298*as.numeric(',names.datasetagg[names.datasetagg == 'hour'],')+21.679)+0.3177))')
names.datasetagg <- as.formula(paste0('cbind(n,count) ~ ',paste(names.datasetagg[! (names.datasetagg %in% c("n","count","prop.conv"))],collapse = '+')))
}) 

fit <- reactive({ 
step(glm(name(), family=binomial(logit), weights = count, data=datasetagg()),
   scope=~., trace=0, direction='both', k=2)
}) 

# model
output$model <- renderPrint({
summary(fit()) #best model glm.step.aic.l
})

# measures
output$measures <- renderPrint({ 
sqrt((sum((fit()$fitted.values-datasetagg()[,'prop.conv'])^2 * datasetagg()[,'count']))/sum(datasetagg()[,'count']))
})

  # download report
output$downloadReport <- downloadHandler(
filename = "mycoefficients.json",

content = function(file) {
  write.table(coefficients(fit()), file, sep="\t")
})

 # plot fit
output$plot <- renderPlot({
ggplot(data.frame(datasetagg(),pred=fit()$fitted.values), aes(x=prop.conv)) + 
  geom_histogram(aes(y=..density..),     
                 binwidth=.02,
                 colour="black", fill="white") +
  geom_density(aes(x=pred),alpha=.2, fill="#E4002B")+xlab("Proportion of convertions")
})

# graphs
observe({
updateSelectInput(session, "featureDisplay_x", 
                  choices =ifelse(input$checkGroup=='distance',"dist.mean",ifelse(input$checkGroup=='similarity',"simi.mean",input$checkGroup)),
                  selected=input$checkGroup[1])
updateSelectInput(session, "featureDisplay_y", 
                  choices =ifelse(input$checkGroup=='distance',"dist.mean",ifelse(input$checkGroup=='similarity',"simi.mean",input$checkGroup)),
                  selected=input$checkGroup[6])
})

# dataset for prediction
a <- data.frame(matrix(c(1,18,1,1,1,0,5,0.25,'[0,0.25)','[0,1)',1,1),nrow=1))
names(a) <- c('day','hour','source','service','relevancy','tollfree','dist.mean','simi.mean','simi.names','dist.names','week','rel')
a[,c('dist.mean','simi.mean',"hour")] <- lapply(a[,c('dist.mean','simi.mean',"hour")],function(x) as.numeric(as.character(x)))


xvarData <- reactive({ 
col <- input$featureDisplay_x
b <- a[names(a) %in% names(datasetagg())[!(names(datasetagg()) %in% c('count', 'n', 'prop.conv'))]]
b <- b[-which(names(b) %in% col)]

sel <- c(names(datasetagg())[!(names(datasetagg()) %in% c('count', 'n', 'prop.conv'))],'mean')
pred <- predict(fit(),newdata = data.frame(datasetagg() %>%  group_by_(.dots = col) %>% summarise(mean = mean(prop.conv)) %>% 
                                           cbind(b) %>% 
                                             select(one_of(sel)))
                ,type="response")

datasetagg() %>%  group_by_(.dots = col) %>% summarise(mean = mean(prop.conv)) %>% 
  cbind(b) %>% 
  select(one_of(sel)) %>%  
  mutate(pred=pred) %>% 
  select_(.dots = c(col,'mean','pred'))
})

p1 <- function(data){
ggplot(melt(data(),id.vars = input$featureDisplay_x),aes_string(x=input$featureDisplay_x,y='value',colour='variable'))+
  scale_colour_manual(values=c("#7A99AC","#E4002B"),labels=c("Average", "Predict"),name  =" ")+
  geom_point() + ylab("proportion of conversions") + ylim(0, 1)
}
  output$distPlotA <- renderPlot(function() {
 plot=p1(xvarData)
 print(plot)
})


yvarData <- reactive({ 
col <- input$featureDisplay_y
b <- a[names(a) %in% names(datasetagg())[!(names(datasetagg()) %in% c('count', 'n', 'prop.conv'))]]
b <- b[-which(names(b) %in% col)]

sel <- c(names(datasetagg())[!(names(datasetagg()) %in% c('count', 'n', 'prop.conv'))],'mean')
pred <- predict(fit(),newdata = data.frame(datasetagg() %>%  group_by_(.dots = col) %>% summarise(mean = mean(prop.conv)) %>% 
                                             cbind(b) %>% 
                                             select(one_of(sel)))
                ,type="response")

  datasetagg() %>%  group_by_(.dots = col) %>% summarise(mean = mean(prop.conv)) %>% 
  cbind(b) %>% 
  select(one_of(sel)) %>%  
  mutate(pred=pred) %>% 
  select_(.dots = c(col,'mean','pred'))
})

p2 <- function(data){
ggplot(melt(data(),id.vars = input$featureDisplay_y),aes_string(x=input$featureDisplay_y,y='value',colour='variable'))+
  scale_colour_manual(values=c("#7A99AC","#E4002B"),labels=c("Average", "Predict"),name  =" ")+
  geom_point() + ylab("proportion of conversions") + ylim(0, 1)
 }
  output$distPlotB <- renderPlot(function() {
plot=p2(yvarData)
print(plot)

})

xyvarData <- reactive({ 
colx <- input$featureDisplay_x
coly <- input$featureDisplay_y
b <- a[names(a) %in% names(datasetagg())[!(names(datasetagg()) %in% c('count', 'n', 'prop.conv'))]]
b <- b[-which(names(b) %in% c(colx,coly))]

sel <- c(names(datasetagg())[!(names(datasetagg()) %in% c('count', 'n', 'prop.conv'))],'mean')
pred <- predict(fit(),newdata = data.frame(datasetagg() %>%  group_by_(.dots = colx,coly) %>% summarise(mean = mean(prop.conv)) %>% 
                                             cbind(b) %>% 
                                             select(one_of(sel)))
                ,type="response")

  datasetagg() %>%  group_by_(.dots = colx, coly) %>% summarise(mean = mean(prop.conv)) %>% 
  cbind(b) %>% 
  select(one_of(sel)) %>%  
  mutate(pred=pred) %>% 
  select_(.dots = c(colx,coly,'mean','pred'))
})

output$webGL <- renderWebGL(function() { # the error is here!!!
  output$webGL <- renderWebGL(function() {
rgl::plot3d(xyvarData()[,1],xyvarData()[,2],xyvarData()[,'mean'],col="#7A99AC",zlab = "proportion of conversions")
rgl::plot3d(xyvarData()[,1],xyvarData()[,2],xyvarData()[,'pred'],col="#E4002B",add=T)
})
})


})

对不起长码,我只是想让它确保它是可重现的。

有什么建议吗?谢谢你的帮助!

编辑:我也尝试过没有成功的情节。我从这里获得了模板:plotly templates for Shiny我在UI.R上使用了这个模板:

graphOutput("ScatterPlot")

,这在Server.R:

  output$ScatterPlot <- renderGraph(function() {
## Create your Plotly graph
trace1 <- list(
  x = xyvarData()[,1],
  y = xyvarData()[,2],
  z = xyvarData()[,'mean'],
  mode = "markers", 
  name = "trace0_y", 
  marker = list(
    size = 12, 
    line = list(
      color = "rgba(217, 217, 217, 0.14)", 
      width = 0.5
    ), 
    opacity = 0.8
  ), 
  type = "scatter3d"
)
trace2 <- list(
  x = xyvarData()[,1],
  y = xyvarData()[,2],
  z = xyvarData()[,'pred'],
  mode = "markers", 
  name = "trace1_y", 
  marker = list(
    color = "rgb(127, 127, 127)", 
    size = 12, 
    symbol = "circle", 
    line = list(
      color = "rgb(204, 204, 204)", 
      width = 1
    ), 
    opacity = 0.9
  ), 
  type = "scatter3d"
)
data <- list(trace1, trace2)
layout <- list(
  autosize = FALSE, 
  width = 500, 
  height = 500, 
  margin = list(
    l = 0, 
    r = 0, 
    b = 0, 
    t = 65
  )
)

# define data
data <- list(trace1, trace2)
# define layout information
layout <- list(
  autosize = FALSE, 
  width = 500, 
  height = 500, 
  margin = list(
    l = 0, 
    r = 0, 
    b = 0, 
    t = 65
  )
)

# This sends message up to the browser client, which will get fed through to
# Plotly's javascript graphing library embedded inside the graph
return(list(
  list(
    id="trendPlot",
    task="newPlot",
    data=data,
    layout=layout
  )
))
})   

取代webGLOutput()renderWebGL({})

1 个答案:

答案 0 :(得分:6)

好的,我得到了它。感谢Joe Cheng,我决定使用threejs并且整齐地工作!

现在,我在UI.R

uiOutput("ScatterPlot")

在Server.R

  output$plott <- renderScatterplotThree({

  col <- c(rep("#7A99AC",table(xyvarData()[,'variable'])[[1]]),rep("#E4002B",table(xyvarData()[,'variable'])[[2]]))
  scatterplot3js(xyvarData()[,1],xyvarData()[,2],xyvarData()[,'value'], color=col, size=0.5, 
             axisLabels=c(input$featureDisplay_x,"prop.conversions",input$featureDisplay_y),zlim=c(0,1))  

})
output$ScatterPlot <- renderUI({
  scatterplotThreeOutput("plott")
})

取代webGLOutput()renderWebGL({})