我正在尝试编写一个简单的程序,允许用户选择参考图像A,然后将所有图像放在同一目录中,将它们标准化为相同的大小(300x300),提取特征,计算距离A的特征,并以距离最远的距离显示它们。
作为Java的初学者,我遇到代码有问题,我的代码没有错误,我能够运行程序,但是当我运行应用程序时,应用程序崩溃,控制台日志是:< / p>
> Exception in thread "main" java.lang.NoClassDefFoundError: com.sun.media.jai.codec.SeekableStream
at javax.media.jai.operator.BMPDescriptor.class$(BMPDescriptor.java:95)
at javax.media.jai.operator.BMPDescriptor.<clinit>(BMPDescriptor.java:94)
at java.lang.Class.forName0(Native Method)
at java.lang.Class.forName(Unknown Source)
at javax.media.jai.RegistryFileParser.getInstance(RegistryFileParser.java:224)
at javax.media.jai.RegistryFileParser.registerDescriptor(RegistryFileParser.java:360)
at javax.media.jai.RegistryFileParser.parseFile(RegistryFileParser.java:295)
at javax.media.jai.RegistryFileParser.loadOperationRegistry(RegistryFileParser.java:55)
at javax.media.jai.OperationRegistry.initializeRegistry(OperationRegistry.java:371)
at javax.media.jai.JAI.<clinit>(JAI.java:566)
at imagePr.NaiveSimilarityFinder.rescale(NaiveSimilarityFinder.java:116)
at imagePr.NaiveSimilarityFinder.<init>(NaiveSimilarityFinder.java:46)
at imagePr.NaiveSimilarityFinder.main(NaiveSimilarityFinder.java:223)
这是Java文件的代码:
9 import java.awt.BorderLayout;
10 import java.awt.Color;
11 import java.awt.Container;
12 import java.awt.Font;
13 import java.awt.GridLayout;
14 import java.awt.image.RenderedImage;
15 import java.awt.image.renderable.ParameterBlock;
16 import java.io.File;
17 import java.io.IOException;
18
19 import javax.imageio.ImageIO;
20 import javax.media.jai.InterpolationNearest;
21 import javax.media.jai.JAI;
22 import javax.media.jai.iterator.RandomIter;
23 import javax.media.jai.iterator.RandomIterFactory;
24 import javax.swing.JFileChooser;
25 import javax.swing.JFrame;
26 import javax.swing.JLabel;
27 import javax.swing.JOptionPane;
28 import javax.swing.JPanel;
29 import javax.swing.JScrollPane;
30
31 import com.sun.media.jai.widget.DisplayJAI;
32 /**
33 * This class uses a very simple, naive similarity algorithm to compare an image
34 * with all others in the same directory.
35 */
36 public class NaiveSimilarityFinder extends JFrame
37 {
38 // The reference image "signature" (25 representative pixels, each in R,G,B).
39 // We use instances of Color to make things simpler.
40 private Color[][] signature;
41 // The base size of the images.
42 private static final int baseSize = 300;
43 // Where are all the files?
44 private static final String basePath =
45 "C:\\imagecmp";
46
47 /*
48 * The constructor, which creates the GUI and start the image processing task.
49 */
50 public NaiveSimilarityFinder(File reference) throws IOException
51 {
52 // Create the GUI
53 super("Naive Similarity Finder");
54 Container cp = getContentPane();
55 cp.setLayout(new BorderLayout());
56 // Put the reference, scaled, in the left part of the UI.
57 RenderedImage ref = rescale(ImageIO.read(reference));
58 cp.add(new DisplayJAI(ref), BorderLayout.WEST);
59 // Calculate the signature vector for the reference.
60 signature = calcSignature(ref);
61 // Now we need a component to store X images in a stack, where X is the
62 // number of images in the same directory as the original one.
63 File[] others = getOtherImageFiles(reference);
64 JPanel otherPanel = new JPanel(new GridLayout(others.length, 2));
65 cp.add(new JScrollPane(otherPanel), BorderLayout.CENTER);
66 // For each image, calculate its signature and its distance from the
67 // reference signature.
68 RenderedImage[] rothers = new RenderedImage[others.length];
69 double[] distances = new double[others.length];
70 for (int o = 0; o < others.length; o++)
71 {
72 rothers[o] = rescale(ImageIO.read(others[o]));
73 distances[o] = calcDistance(rothers[o]);
74 }
75 // Sort those vectors *together*.
76 for (int p1 = 0; p1 < others.length - 1; p1++)
77 for (int p2 = p1 + 1; p2 < others.length; p2++)
78 {
79 if (distances[p1] > distances[p2])
80 {
81 double tempDist = distances[p1];
82 distances[p1] = distances[p2];
83 distances[p2] = tempDist;
84 RenderedImage tempR = rothers[p1];
85 rothers[p1] = rothers[p2];
86 rothers[p2] = tempR;
87 File tempF = others[p1];
88 others[p1] = others[p2];
89 others[p2] = tempF;
90 }
91 }
92 // Add them to the UI.
93 for (int o = 0; o < others.length; o++)
94 {
95 otherPanel.add(new DisplayJAI(rothers[o]));
96 JLabel ldist = new JLabel("<html>" + others[o].getName() + "<br>"
97 + String.format("% 13.3f", distances[o]) + "</html>");
98 ldist.setFont(new Font(Font.MONOSPACED, Font.PLAIN, 36));
99 System.out.printf("<td class=\"simpletable legend\"> "+
100 "<img src=\"MiscResources/ImageSimilarity/icons/miniicon_%s\" "+
101 "alt=\"Similarity result\"><br>% 13.3f</td>\n", others[o].getName(),distances[o]);
102 otherPanel.add(ldist);
103 }
104 // More GUI details.
105 pack();
106 setVisible(true);
107 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
108 }
109
110 /*
111 * This method rescales an image to 300,300 pixels using the JAI scale
112 * operator.
113 */
114 private RenderedImage rescale(RenderedImage i)
115 {
116 float scaleW = ((float) baseSize) / i.getWidth();
117 float scaleH = ((float) baseSize) / i.getHeight();
118 // Scales the original image
119 ParameterBlock pb = new ParameterBlock();
120 pb.addSource(i);
121 pb.add(scaleW);
122 pb.add(scaleH);
123 pb.add(0.0F);
124 pb.add(0.0F);
125 pb.add(new InterpolationNearest());
126 // Creates a new, scaled image and uses it on the DisplayJAI component
127 return JAI.create("scale", pb);
128 }
129
130 /*
131 * This method calculates and returns signature vectors for the input image.
132 */
133 private Color[][] calcSignature(RenderedImage i)
134 {
135 // Get memory for the signature.
136 Color[][] sig = new Color[5][5];
137 // For each of the 25 signature values average the pixels around it.
138 // Note that the coordinate of the central pixel is in proportions.
139 float[] prop = new float[]
140 {1f / 10f, 3f / 10f, 5f / 10f, 7f / 10f, 9f / 10f};
141 for (int x = 0; x < 5; x++)
142 for (int y = 0; y < 5; y++)
143 sig[x][y] = averageAround(i, prop[x], prop[y]);
144 return sig;
145 }
146
147 /*
148 * This method averages the pixel values around a central point and return the
149 * average as an instance of Color. The point coordinates are proportional to
150 * the image.
151 */
152 private Color averageAround(RenderedImage i, double px, double py)
153 {
154 // Get an iterator for the image.
155 RandomIter iterator = RandomIterFactory.create(i, null);
156 // Get memory for a pixel and for the accumulator.
157 double[] pixel = new double[3];
158 double[] accum = new double[3];
159 // The size of the sampling area.
160 int sampleSize = 15;
161 int numPixels = 0;
162 // Sample the pixels.
163 for (double x = px * baseSize - sampleSize; x < px * baseSize + sampleSize; x++)
164 {
165 for (double y = py * baseSize - sampleSize; y < py * baseSize + sampleSize; y++)
166 {
167 iterator.getPixel((int) x, (int) y, pixel);
168 accum[0] += pixel[0];
169 accum[1] += pixel[1];
170 accum[2] += pixel[2];
171 numPixels++;
172 }
173 }
174 // Average the accumulated values.
175 accum[0] /= numPixels;
176 accum[1] /= numPixels;
177 accum[2] /= numPixels;
178 return new Color((int) accum[0], (int) accum[1], (int) accum[2]);
179 }
180
181 /*
182 * This method calculates the distance between the signatures of an image and
183 * the reference one. The signatures for the image passed as the parameter are
184 * calculated inside the method.
185 */
186 private double calcDistance(RenderedImage other)
187 {
188 // Calculate the signature for that image.
189 Color[][] sigOther = calcSignature(other);
190 // There are several ways to calculate distances between two vectors,
191 // we will calculate the sum of the distances between the RGB values of
192 // pixels in the same positions.
193 double dist = 0;
194 for (int x = 0; x < 5; x++)
195 for (int y = 0; y < 5; y++)
196 {
197 int r1 = signature[x][y].getRed();
198 int g1 = signature[x][y].getGreen();
199 int b1 = signature[x][y].getBlue();
200 int r2 = sigOther[x][y].getRed();
201 int g2 = sigOther[x][y].getGreen();
202 int b2 = sigOther[x][y].getBlue();
203 double tempDist = Math.sqrt((r1 - r2) * (r1 - r2) + (g1 - g2)
204 * (g1 - g2) + (b1 - b2) * (b1 - b2));
205 dist += tempDist;
206 }
207 return dist;
208 }
209
210 /*
211 * This method get all image files in the same directory as the reference.
212 * Just for kicks include also the reference image.
213 */
214 private File[] getOtherImageFiles(File reference)
215 {
216 File dir = new File(reference.getParent());
217 // List all the image files in that directory.
218 File[] others = dir.listFiles(new JPEGImageFileFilter());
219 return others;
220 }
221
222 /*
223 * The entry point for the application, which opens a file with an image that
224 * will be used as reference and starts the application.
225 */
226 public static void main(String[] args) throws IOException
227 {
228 JFileChooser fc = new JFileChooser(basePath);
229 fc.setFileFilter(new JPEGImageFileFilter());
230 int res = fc.showOpenDialog(null);
231 // We have an image!
232 if (res == JFileChooser.APPROVE_OPTION)
233 {
234 File file = fc.getSelectedFile();
235 new NaiveSimilarityFinder(file);
236 }
237 // Oops!
238 else
239 {
240 JOptionPane.showMessageDialog(null,
241 "You must select one image to be the reference.", "Aborting...",
242 JOptionPane.WARNING_MESSAGE);
243 }
244 }
245
246 }
快速猜测我可能做错了什么?我正在使用Windows机器在Eclipse中编码。
答案 0 :(得分:0)
我不确定是否有人对此问题仍然感兴趣,但是我对此感到很好奇,并试图找到有问题的代码的来源。似乎是从这里开始的:Java Image Processing Cookbook
要测试代码,我只是建立了一个基于Maven的简单Java项目,当然遇到了问题,Java 11中再也没有Java Media Framework了! ;-)
因此,我在项目pom.xml文件中添加了一个不错的Springsource依赖项:
<dependencies>
<dependency>
<groupId>javax.media.jai</groupId>
<artifactId>com.springsource.javax.media.jai.core</artifactId>
<version>1.1.3</version>
</dependency>
</dependencies>
要访问springsource存储库,我还添加了以下存储库信息:
<repositories>
<repository>
<id>com.springsource.repository.bundles.external</id>
<name>SpringSource Enterprise Bundle Repository - External Bundle Releases</name>
<url>http://repository.springsource.com/maven/bundles/external</url>
</repository>
</repositories>
完成后,项目可以成功编译并按预期运行。它计算出所选图像(运行时会打开文件选择器)与同一目录中所有其他图像之间的非常简单的相似性索引。
但是,这是一个次要的缺点,因为找到丢失的mediaLib加速器似乎存在问题,以加快处理速度。看起来像这样:
Error: Could not find mediaLib accelerator wrapper classes. Continuing in pure Java mode.
Occurs in: com.sun.media.jai.mlib.MediaLibAccessor
java.lang.NoClassDefFoundError: com/sun/medialib/mlib/Image
at com.sun.media.jai.mlib.MediaLibAccessor$1.run(MediaLibAccessor.java:248)
at java.base/java.security.AccessController.doPrivileged(AccessController.java:310)
[...]
幸运的是,计算仍非常快地运行,并且结果非常有趣;-)如果用于图像的非常基本相似性比较的基本Java Imaging代码,这真是个不错的小篇幅!做得好! :)
更新:要摆脱有关缺少加速器的错误,请通过将其添加到代码中来更改此环境变量:
System.setProperty("com.sun.media.jai.disableMediaLib", "true");
有关我使用的图像的示例输出,请参见此处。要了解这些值,请参见Java Image Processing Cookbook:
<td class="simpletable legend"> <img src="MiscResources/ImageSimilarity/icons/miniicon_action-ancient-architecture-231013.jpg" alt="Similarity result"><br> 0,000</td>
<td class="simpletable legend"> <img src="MiscResources/ImageSimilarity/icons/miniicon_army-blur-figurines-231014.jpg" alt="Similarity result"><br> 2169,529</td>
<td class="simpletable legend"> <img src="MiscResources/ImageSimilarity/icons/miniicon_action-armed-army-231012.jpg" alt="Similarity result"><br> 2525,682</td>
<td class="simpletable legend"> <img src="MiscResources/ImageSimilarity/icons/miniicon_army-attack-figurines-1214270.jpg" alt="Similarity result"><br> 2610,023</td>
<td class="simpletable legend"> <img src="MiscResources/ImageSimilarity/icons/miniicon_bowl-cereal-bowl-cereals-135525.jpg" alt="Similarity result"><br> 3388,865</td>
<td class="simpletable legend"> <img src="MiscResources/ImageSimilarity/icons/miniicon_blue-bowl-bright-1375811.jpg" alt="Similarity result"><br> 3392,382</td>
<td class="simpletable legend"> <img src="MiscResources/ImageSimilarity/icons/miniicon_aqua-blue-clean-1201625.jpg" alt="Similarity result"><br> 4121,866</td>
<td class="simpletable legend"> <img src="MiscResources/ImageSimilarity/icons/miniicon_background-berries-blue-674689.jpg" alt="Similarity result"><br> 4133,818</td>
<td class="simpletable legend"> <img src="MiscResources/ImageSimilarity/icons/miniicon_blue-bright-citrus-405031.jpg" alt="Similarity result"><br> 4746,385</td>