来自现有DF的元信息的新pandas数据帧

时间:2015-07-09 02:19:16

标签: python pandas

目前有一个CSV文件输出日期框如下:

[in]
df = pd.read_csv(file_name)
df.sort('TOTAL_MONTHS', inplace=True)
print df[['TOTAL_MONTHS','COUNTEM']]

[out] 
    TOTAL_MONTHS       COUNTEM
    12                 0 
    12                 0 
    12                 2 
    25                 10
    25                 0 
    37                 1
    68                 3

我想获得' COUNTEM'的总行数(按TOTAL_MONTHS计算)。值落在预设的bin中。

数据将通过excel / powerpoint输入直方图:

X轴=合约数

Y轴= Total_months

bar的颜色= COUNTEM

图表的输入是这样的(列为COUNTEM箱):

MONTHS    0    1-3    4-6    7-10    10+    20+
0         0    0      0      0       0      0  
1         0    0      0      0       0      0   
2         0    0      0      0       0      0
3         0    0      0      0       0      0
...
12        2    1      0      0       0      0
...
25        1    0      0      0       1      0
...
37        0    1      0      0       0      0
...
68        0    1      0      0       0      0

理想情况下,我希望代码以该格式输出数据帧。

1 个答案:

答案 0 :(得分:2)

有趣的问题。知道大熊猫(因为我没有正确),可能会有一个更加更加简单和简单的解决方案。但是,也可以通过以下方式进行迭代:

#First, imports and create your data
import pandas as pd

DF = pd.DataFrame({'TOTAL_MONTHS'   : [12, 12, 12, 25, 25, 37, 68], 
                   'COUNTEM'        : [0, 0, 2, 10, 0, 1, 3]
                   })

#Next create a data frame of 'bins' with the months as index and all
#values set at a default of zero
New_DF = pd.DataFrame({'bin0'   : 0,
                       'bin1'   : 0,
                       'bin2'   : 0,
                       'bin3'   : 0,
                       'bin4'   : 0,
                       'bin5'   : 0}, 
                       index = DF.TOTAL_MONTHS.unique())

In [59]: New_DF
Out[59]: 
    bin0  bin1  bin2  bin3  bin4  bin5
12     0     0     0     0     0     0
25     0     0     0     0     0     0
37     0     0     0     0     0     0
68     0     0     0     0     0     0

#Create a list of bins (rather than 20 to infinity I limited it to 100)
bins = [[0], range(1, 4), range(4, 7), range(7, 10), range(10, 20), range(20, 100)]

#Now iterate over the months of the New_DF index and slice the original
#DF where TOTAL_MONTHS equals the month of the current iteration. Then
#get a value count from the original data frame and use integer indexing
#to place the value count in the appropriate column of the New_DF:

for month in New_DF.index:
    monthly = DF[DF['TOTAL_MONTHS'] == month]
    counts = monthly['COUNTEM'].value_counts()
    for count in counts.keys():
        for x in xrange(len(bins)):
            if count in bins[x]:
                New_DF.ix[month, x] = counts[count]

这给了我:

In [62]: New_DF
Out[62]: 
    bin0  bin1  bin2  bin3  bin4  bin5
12     2     1     0     0     0     0
25     1     0     0     0     1     0
37     0     1     0     0     0     0
68     0     1     0     0     0     0

这似乎是你想要的。您可以根据需要重命名索引....

希望这会有所帮助。也许某人有一个使用内置pandas功能的解决方案,但是现在这似乎有效。