在使用predict.lm时,我要么收到错误信息,要么收到错误的解决方案,而我正在尝试了解可能导致错误的原因。
在此处发布我的问题之前,我已经阅读了几个类似于我的问题的解决方案,如此处的example所示。但是,解决这些问题的方法似乎并没有在这里工作,我试图找出原因以及如何解决它。
为了最好地解释我的问题,请考虑以下MWE:
#------------------------------
# Fit least squares model
#------------------------------
data(mtcars)
a <- mtcars$mpg
x <- data.matrix(cbind(mtcars$wt, mtcars$hp))
xTest <- x[2,] # We will use this for prediction later
fitCar <-lm(a ~ x)
#------------------------------
# Prediction for x = xTest
#------------------------------
# Method 1 (doesn't work)
yPred <- predict(fitCar, newdata = data.frame(x = xTest) , interval="confidence")
Error: variable 'x' was fitted with type "nmatrix.2" but type "numeric" was supplied
# Method 2 (works, but as you may observe, it is incorrect)
yPred <- predict(fitCar, newdata = data.frame(xTest) , interval="confidence")
fit lwr upr
1 23.572329 22.456232 24.68843
2 22.583483 21.516224 23.65074
3 25.275819 23.974405 26.57723
4 21.265020 20.109318 22.42072
....
....
Warning message:
'newdata' had 2 rows but variables found have 32 rows
问题:鉴于我们想要找到与xTest相对应的yPred,那么这样做的正确方法是什么?
答案 0 :(得分:0)
如果您想预测,请始终将data.frame传递给lm
:
a <- mtcars$mpg
x <- data.matrix(cbind(mtcars$wt, mtcars$hp))
DF <- data.frame(a, x)
xTest <- x[2,] # We will use this for prediction later
fitCar <-lm(a ~ ., data = DF)
yPred <- predict(fitCar, newdata = data.frame(X1 = xTest[1], X2 = xTest[2]) , interval="confidence")
# fit lwr upr
#1 22.58348 21.51622 23.65074