格点是具有整数坐标的点。
该线是两个格点A和B之间的垂直平分线。(该线上的每个点与A点和B点等距离。)
如何有效地计算方形0,0→N,N?
内垂直平分线上的晶格点这是一个正方形,有一些示例点A和B↓
M点是A和B之间的中点。
到目前为止,我的想法一直带着我:
点LA,LB和RA,RB是一个方形,您可以轻松地计算到AB线的左侧和右侧。
A和LB之间的中点LM,以及中点RM A和RB也位于垂直平分线上。
那么如何利用这些信息快速计算两点之间垂直平分线上的格点?
这不是家庭作业,只是业余爱好编码
答案 0 :(得分:5)
I might be over-thinking this, going by matovitch's latest code draft (which I've only had a brief glance at), but anyway...
Let A = (A.x, A.y), B = (B.x, B.y), where (A.x, A.y, B.x, B.y) are integers.
Then line p, the perpendicular bisector of AB, passes through
M = (M.x, M.y) = ((A.x + B.x)/2, (A.y + B.y)/2)
The product of the slopes of AB and p is -1, thus the slope of p is
-(B.x - A.x) / (B.y - A.y)
and hence in point-slope form the equation of p is
(y - M.y) / (x - M.x) = (A.x - B.x) / (B.y - A.y)
Rearranging,
y*(B.y - A.y) + x*(B.x - A.x) = M.y * (B.y - A.y) + M.x * (B.x - A.x)
= ((B.y + A.y) * (B.y - A.y) + (B.x + A.x) * (B.x - A.x)) / 2
= (B.y^2 - A.y^2 + B.x^2 - A.x^2) / 2
Clearly, for any lattice point (x, y), y*(B.y - A.y) + x*(B.x - A.x) must be an integer. So the line p will only pass through lattice points if (B.y^2 - A.y^2 + B.x^2 - A.x^2) is even.
Now (B.y^2 - A.y^2 + B.x^2 - A.x^2) is even if & only if (A.x + B.x + A.y + B.y) is even, which is true if an even number of (A.x, A.y, B.x, B.y) are odd. In what follows, I assume that (A.x + B.x + A.y + B.y) is even.
Let
dx = (B.x - A.x)
dy = (B.y - A.y)
s = (B.y^2 - A.y^2 + B.x^2 - A.x^2) / 2
So the equation of p is
y * dy + x * dx = s
Because y, dy, x, dx & s are all integers that equation is a linear Diophantine equation, and the standard way to find the solutions of such an equation is to use the extended Euclidean algorithm. Our equation will only have solutions if the gcd (greatest common divisor) of dx & dy divides s. Fortunately, that's true in this case, but I won't give the proof here.
Let Y, X be a solution of y * dy + x * dx = g, where g is the gcd(dx, dy), i.e.,
Y * dy + X * dx = g
Y * dy/g + X * dx/g = 1
Let dy' = dy/g, dx' = dx/g, s' = s/g, so Y * dy' + X * dx' = 1
Dividing the last equation for p through by g, we get y * dy' + x * dx' = s'
And we can now construct one solution for it.
(Y * s') * dy' + (X * s') * dx' = s'
i.e., (X * s', Y * s') is a lattice point on the line.
We can get all solutions like this:
(Y * s' + k * dx') * dy' + (X * s' - k * dy') * dx' = s', for all integers k.
To restrict the solutions to the grid from (0, 0) to (W, H), we need to solve these inequalities for k:
0 <= X * s' - k * dy' <= W and 0 <= Y * s' + k * dx' <= H
I won't show the solutions of those inequalities right here; for the details see the code below.
#! /usr/bin/env python
''' Lattice Line
Find lattice points, i.e, points with integer co-ordinates,
on the line that is the perpendicular bisector of the line segment AB,
where A & B are lattice points.
See http://stackoverflow.com/q/31265139/4014959
Written by PM 2Ring 2015.07.08
Code for Euclid's algorithm & the Diophantine solver written 2010.11.27
'''
from __future__ import division
import sys
from math import floor, ceil
class Point(object):
''' A simple 2D point '''
def __init__(self, x, y):
self.x, self.y = x, y
def __repr__(self):
return "Point(%s, %s)" % (self.x, self.y)
def __str__(self):
return "(%s, %s)" % (self.x, self.y)
def euclid(a, b):
''' Euclid's extended algorithm for the GCD.
Returns a list of tuples of (dividend, quotient, divisor, remainder)
'''
if a < b:
a, b = b, a
k = []
while True:
q, r = a // b, a % b
k.append((a, q, b, r))
if r == 0:
break
a, b = b, r
return k
def dio(aa, bb):
''' Linear Diophantine solver
Returns [x, aa, y, bb, d]: x*aa + y*bb = d
'''
a, b = abs(aa), abs(bb)
swap = a < b
if swap:
a, b = b, a
#Handle trivial cases
if a == b:
eqn = [2, a, -1, a]
elif a % b == 0:
q = a // b
eqn = [1, a, 1-q, b]
else:
#Generate quotients & remainders list
z = euclid(a, b)[::-1]
#Build equation from quotients & remainders
eqn = [0, 0, 1, 0]
for v in z[1:]:
eqn = [eqn[2], v[0], eqn[0] - eqn[2]*v[1], v[2]]
#Rearrange & fix signs, if required
if swap:
eqn = eqn[2:] + eqn[:2]
if aa < 0:
eqn[:2] = [-eqn[0], -eqn[1]]
if bb < 0:
eqn[2:] = [-eqn[2], -eqn[3]]
d = eqn[0]*eqn[1] + eqn[2]*eqn[3]
if d < 0:
eqn[0], eqn[2], d = -eqn[0], -eqn[2], -d
return eqn + [d]
def lattice_line(pA, pB, pC):
''' Find lattice points, i.e, points with integer co-ordinates, on
the line that is the perpendicular bisector of the line segment AB,
Only look for points in the rectangle from (0,0) to C
Let M be the midpoint of AB. Then M = ((A.x + B.x)/2, (A.y + B.y)/2),
and the equation of the perpendicular bisector of AB is
(y - M.y) / (x - M.x) = (A.x - B.x) / (B.y - A.y)
'''
nosolutions = 'No solutions found'
dx = pB.x - pA.x
dy = pB.y - pA.y
#Test parity of co-ords to see if there are solutions
if (dx + dy) % 2 == 1:
print nosolutions
return
#Handle horizontal & vertical lines
if dx == 0:
#AB is vertical, so bisector is horizontal
y = pB.y + pA.y
if dy == 0 or y % 2 == 1:
print nosolutions
return
y //= 2
for x in xrange(pC.x + 1):
print Point(x, y)
return
if dy == 0:
#AB is horizontal, so bisector is vertical
x = pB.x + pA.x
if x % 2 == 1:
print nosolutions
return
x //= 2
for y in xrange(pC.y + 1):
print Point(x, y)
return
#Compute s = ((pB.x + pA.x)*dx + (pB.y + pA.y)*dy) / 2
#s will always be an integer since (dx + dy) is even
#The desired line is y*dy + x*dx = s
s = (pB.x**2 - pA.x**2 + pB.y**2 - pA.y**2) // 2
#Find ex, ey, g: ex * dx + ey * dy = g, where g is the gcd of (dx, dy)
#Note that g also divides s
eqn = dio(dx, dy)
ex, ey, g = eqn[::2]
#Divide the parameters of the equation by the gcd
dx //= g
dy //= g
s //= g
#Find lattice limits
xlo = (ex * s - pC.x) / dy
xhi = ex * s / dy
if dy < 0:
xlo, xhi = xhi, xlo
ylo = -ey * s / dx
yhi = (pC.y - ey * s) / dx
if dx < 0:
ylo, yhi = yhi, ylo
klo = int(ceil(max(xlo, ylo)))
khi = int(floor(min(xhi, yhi)))
print 'Points'
for k in xrange(klo, khi + 1):
x = ex * s - dy * k
y = ey * s + dx * k
assert x*dx + y*dy == s
print Point(x, y)
def main():
if len(sys.argv) != 7:
print ''' Find lattice points, i.e, points with integer co-ordinates,
on the line that is the perpendicular bisector of the line segment AB,
where A & B are lattice points with co-ords (xA, yA) & (xB, yB).
Only print lattice points in the rectangle from (0, 0) to (W, H)
Usage:
%s xA yA xB yB W H''' % sys.argv[0]
exit(1)
coords = [int(s) for s in sys.argv[1:]]
pA = Point(*coords[0:2])
pB = Point(*coords[2:4])
pC = Point(*coords[4:6])
lattice_line(pA, pB, pC)
if __name__ == '__main__':
main()
I haven't tested this code extensively, but it appears to work correctly. :)
答案 1 :(得分:2)
好的我确实没有清楚地解释我的解决方案,让我们重新开始吧。给定两倍分辨率的网格,中间点M将在网格上。垂直双谱系的最小方向矢量由V =(yB-yA,xA-xB)/ gcd(yB-yA,xA-xB)给出。然后我们看看M和V模数格子Z / 2Z x Z / 2Z以检查是否可以找到具有偶数坐标的点M + iV(也就是在粗网格上)。然后我们可以在格子上计算起始点S = M + jV(实际上j = 0或1)并将着名的点集合作为{S + iV,i integer}。
[正在运行;)] 这个C ++代码打印S和V,也就是距离中间最近的格点,矢量可以加或减来获得下一个/前一个格点。然后你必须过滤点以获得广场内的点(在此测试:http://coliru.stacked-crooked.com/a/ba9f8aec45e1c2ea):
int gcd(int n1, int n2)
{
n1 = (n1 > 0) ? n1 : -n1;
n2 = (n2 > 0) ? n2 : -n2;
if (n1 > n2)
{
int t = n1;
n1 = n2;
n2 = t;
}
while (n2 % n1 != 0)
{
int tmp = n2 % n1;
n2 = n1;
n1 = tmp;
}
return n1;
}
struct Point
{
const Point& operator=(const Point& rhs)
{
x = rhs.x;
y = rhs.y;
return *this;
}
const Point& operator+=(const Point& rhs)
{
x += rhs.x;
y += rhs.y;
return *this;
}
const Point& operator-=(const Point& rhs)
{
x += rhs.x;
y += rhs.y;
return *this;
}
const Point& operator/=(int rhs)
{
x /= rhs;
y /= rhs;
return *this;
}
const Point& reduce()
{
return *this /= gcd(x, y);
}
int x;
int y;
};
const Point operator+(Point lhs, const Point& rhs)
{
lhs += rhs;
return lhs;
}
const Point operator-(Point lhs, const Point& rhs)
{
lhs -= rhs;
return lhs;
}
const Point operator/(Point lhs, int rhs)
{
lhs /= rhs;
return lhs;
}
bool findBase(Point& p1, Point& p2, Point& oBase, Point& oDir)
{
Point m = p1 + p2;
Point v = {p2.y - p1.y, p1.x - p2.x};
oDir = v.reduce();
if (m.x % 2 == 0 && m.y % 2 == 0)
{
oBase = m / 2;
return true;
}
else if (((m.x % 2 == 0 && v.x % 2 == 0) &&
(m.y % 2 == 1 && v.y % 2 == 1)) ||
((m.x % 2 == 1 && v.x % 2 == 1) &&
(m.y % 2 == 0 && v.y % 2 == 0)) ||
((m.x % 2 == 1 && v.x % 2 == 1) &&
(m.y % 2 == 1 && v.y % 2 == 1)))
{
oBase = (m + v) / 2;
return true;
}
else
{
return false;
}
}