我已经猎杀并且无法理解如何将regmatches的输出转换为可以导出的任何内容。希望这个问题不是那么具体,对社区来说毫无价值。我遇到了与以下链接中的问题类似的问题:
Extracting hashtags in several tweets using R
但是,我无法弄清楚如何从regmatches列表中保存/导出/创建数据框。理想情况下,每个标签都会保存在一个单独的列中。但是每次尝试我都会得到一个输出:
[[6267]]
character(0)
[[6268]]
[1] "#ASCO15"
[[6269]]
[1] "#FDA" "#Fast" "#Track" "#AML" "#Pancreatic"
如果我尝试导出我得到的调度结果:
Error in data.frame(character(0), character(0), character(0), character(0), :
arguments imply differing number of rows: 0, 8, 2, 3, 5, 1, 4, 7, 6, 9
谢谢你
编辑: 对不起,我本可以做一个糟糕的工作来解释自己。
dput(hi)
structure(list(text = c("Hooray ! #Wimbledon2Day has plugged its brain back in at last ! No more sub- Top Gear telly #propertenniscoverage",
"gone but never forgotten #TopGear ", "The final episode of 'Top Gear' with Jeremy Clarkson is going to break records http://brbr.co/1JCeJYc\312"
)), class = c("tbl_df", "tbl", "data.frame"), row.names = c(NA,
-3L), .Names = "text")
根据该数据,我想提取主题标签(#)及其后的单词,并将它们分配给列。上面链接中的代码执行了第一部分。
test<-regmatches(hi$text,gregexpr("#(\\d|\\w)+",hi$text),)
给我:
[[1]]
[1] "#Wimbledon2Day" "#propertenniscoverage"
[[2]]
[1] "#TopGear"
[[3]]
character(0)
但是当我尝试检查或导出它时,我得到:
Error in data.frame(c("#Wimbledon2Day", "#propertenniscoverage"), "#TopGear", :
arguments imply differing number of rows: 2, 1, 0
答案 0 :(得分:2)
如果你有大量的推文和独特的标签,你应该考虑使用稀疏矩阵。您可以在itemMatrix
包中找到一个这样的稀疏矩阵对象arules
。您可以直接将列表强制转换为此稀疏矩阵,而无需在@ LegalizeIt的答案中写出unique
和sapply
步骤(这是一个很好的基础解决方案,我给他+1)。
foo <- c("RddzAlejandra: RT @NiallOfficial: What a day for @johnJoeNevin ! Sooo proud t have been there to see him at #London2012 and here in mgar #MullingarShuffle","BPOInsight: RT @atos: Atos completes delivery of key IT systems for London 2012 Olympic Games http://t.co/Modkyo2R #london2012","BloombergWest: The #Olympics sets a ratings record for #NBC, with 219M viewers tuning in. http://t.co/scGzIXBp #london2012 #tech")
ms <- regmatches(foo, gregexpr("#(\\d|\\w)+", foo)) # extract hashtags from tweet (from other post)
library(arules)
im <- as(ms, "itemMatrix")
#you can retrieve the rows like this
as(im,"matrix")
# #london2012 #London2012 #MullingarShuffle #NBC #Olympics #tech
# 1 0 1 1 0 0 0
# 2 1 0 0 0 0 0
# 3 1 0 0 1 1 1
答案 1 :(得分:1)
使用链接帖子中的示例
foo <- c("RddzAlejandra: RT @NiallOfficial: What a day for @johnJoeNevin ! Sooo proud t have been there to see him at #London2012 and here in mgar #MullingarShuffle","BPOInsight: RT @atos: Atos completes delivery of key IT systems for London 2012 Olympic Games http://t.co/Modkyo2R #london2012","BloombergWest: The #Olympics sets a ratings record for #NBC, with 219M viewers tuning in. http://t.co/scGzIXBp #london2012 #tech")
ms <- regmatches(foo, gregexpr("#(\\d|\\w)+", foo)) # extract hashtags from tweet (from other post)
cols <- unique(unlist(ms)) # get unique hashtags
setNames(data.frame(t(sapply(ms, function(i) cols %in% i))), cols)
# #London2012 #MullingarShuffle #london2012 #Olympics #NBC #tech
# 1 TRUE TRUE FALSE FALSE FALSE FALSE
# 2 FALSE FALSE TRUE FALSE FALSE FALSE
# 3 FALSE FALSE TRUE TRUE TRUE TRUE
这些行对应于推文。