我有一个名为Books
的命名元组列表,我正在尝试将price
字段增加20%,这确实会更改Books
的值。我试着这样做:
from collections import namedtuple
Book = namedtuple('Book', 'author title genre year price instock')
BSI = [
Book('Suzane Collins','The Hunger Games', 'Fiction', 2008, 6.96, 20),
Book('J.K. Rowling', "Harry Potter and the Sorcerer's Stone", 'Fantasy', 1997, 4.78, 12)]
for item in BSI:
item = item.price*1.10
print(item.price)
但我一直在接受:
Traceback (most recent call last):
print(item.price)
AttributeError: 'float' object has no attribute 'price'
据我所知,我无法在namedtuple中设置字段。如何更新price
?
我试图把它变成一个函数:
def restaurant_change_price(rest, newprice):
rest.price = rest._replace(price = rest.price + newprice)
return rest.price
print(restaurant_change_price(Restaurant("Taillevent", "French", "343-3434", "Escargots", 24.50), 25))
但是我收到了错误的说法:
rest.price = rest._replace(price = rest.price + newprice)
AttributeError: can't set attribute
有人能告诉我为什么会这样吗?
答案 0 :(得分:35)
命名元组是不可变的,因此您无法操纵它们。
如果您想要可变,可以使用recordtype
。
from recordtype import recordtype
Book = recordtype('Book', 'author title genre year price instock')
books = [
Book('Suzane Collins','The Hunger Games', 'Fiction', 2008, 6.96, 20),
Book('J.K. Rowling', "Harry Potter and the Sorcerer's Stone", 'Fantasy', 1997, 4.78, 12)]
for book in books:
book.price *= 1.1
print(book.price)
PS:如果您没有安装,可能需要pip install recordtype
。
您也可以使用namedtuple
方法继续使用from collections import namedtuple
Book = namedtuple('Book', 'author title genre year price instock')
books = [
Book('Suzane Collins','The Hunger Games', 'Fiction', 2008, 6.96, 20),
Book('J.K. Rowling', "Harry Potter and the Sorcerer's Stone", 'Fantasy', 1997, 4.78, 12)]
for i in range(len(books)):
books[i] = books[i]._replace(price = books[i].price*1.1)
print(books[i].price)
。
viewDidLoad()
答案 1 :(得分:4)
这看起来像Python的数据分析库pandas的任务。这样做真的非常容易:
In [6]: import pandas as pd
In [7]: df = pd.DataFrame(BSI, columns=Book._fields)
In [8]: df
Out[8]:
author title genre year \
0 Suzane Collins The Hunger Games Fiction 2008
1 J.K. Rowling Harry Potter and the Sorcerers Stone Fantasy 1997
price instock
0 6.96 20
1 4.78 12
In [9]: df['price'] *= 100
In [10]: df
Out[10]:
author title genre year \
0 Suzane Collins The Hunger Games Fiction 2008
1 J.K. Rowling Harry Potter and the Sorcerer's Stone Fantasy 1997
price instock
0 696 20
1 478 12
现在这不仅仅比使用namedtuple
s更好,更好吗?
答案 2 :(得分:1)
在Python> = 3.7中,您可以使用带有新变量注释功能的dataclass装饰器来生成可变的记录类型:
/*
* @typedef {import('../lib/mycustomservice')} CustomService
*
*/
class abcController
{
/**
* @param {CustomService} mycustomservice
*/
constructor(mycustomservice)
{
this.customService = mycustomservice;
....
....
}
}
输出:
from dataclasses import dataclass
@dataclass
class Book:
author: str
title: str
genre: str
year: int
price: float
instock: int
BSI = [
Book("Suzane Collins", "The Hunger Games", "Fiction", 2008, 6.96, 20),
Book(
"J.K. Rowling",
"Harry Potter and the Sorcerer's Stone",
"Fantasy",
1997,
4.78,
12,
),
]
for item in BSI:
item.price *= 1.10
print(f"New price for '{item.title}' book is {item.price:,.2f}")