表示条形图基数R的统计上显着的差异

时间:2015-07-02 18:37:49

标签: r plot p-value

以前在这篇文章中已经提到了这一点:用条形图表示使用R的统计学差异。但是,他们想知道如何使用ggplot2来做到这一点。我想知道你是如何使用基本包或函数barplot()来做到这一点的。 我想要一些如下图所示的内容:

http://i.stack.imgur.com/3I6El.jpg

我目前的代码:

SRCS := $(wildcard *.c)
# This is a substitution reference. http://www.gnu.org/software/make/manual/make.html#Substitution-Refs
BINS := $(SRCS:%.c=bin/%)

CFLAGS=-Wall -g

# Tell make that the all target has every binary as a prequisite and tell make that it will not create an `all` file (see http://www.gnu.org/software/make/manual/make.html#Phony-Targets).
.PHONY: all
all: $(BINS)

bin:
    mkdir $@

# Tell make that the binaries in the current directory are intermediate files so it doesn't need to care about them directly (and can delete them). http://www.gnu.org/software/make/manual/make.html#index-_002eINTERMEDIATE
# This keeps make from building the binary in the current directory a second time if you run `make; make`.
.INTERMEDIATE: $(notdir $(BINS))

# Tell make that it should delete targets if their recipes error. http://www.gnu.org/software/make/manual/make.html#index-_002eDELETE_005fON_005fERROR 
.DELETE_ON_ERROR:

# This is a static pattern rule to tell make how to handle all the `$(BINS)` files. http://www.gnu.org/software/make/manual/make.html#Static-Pattern
$(BINS) : bin/% : % | bin
        mv $^ $@

我想添加比较对比度的p值。

1 个答案:

答案 0 :(得分:5)

这是一个简单的功能。

## Sample Data
means <- seq(10,40,10)
pvals <- seq(0.01, 0.05, 0.02)

barPs <- function(means, pvals, offset=1, ...) {
    breaks <- barplot(means, ylim=c(0, max(means)+3*offset), ...)
    ylims <- diff(means) + means[-length(means)] + offset
    segments(x0=breaks[-length(breaks)], y0=ylims, x1=breaks[-1], y1=ylims)
    segments(x0=c(breaks[-length(breaks)], breaks[-1]),
             y0=rep(ylims, each=2), y1=rep(ylims-offset/2, each=2))
    text(breaks[-length(breaks)]+diff(breaks[1:2])/2, ylims+offset, 
         labels=paste("p=", pvals))
}

barPs(means, pvals, offset=1, main="Bar w/ P-value", 
      names.arg=toupper(letters[1:4]))

enter image description here