在对我的数据进行PCA并绘制kmeans簇后,我的情节看起来很奇怪。群集的中心和点的散点图对我来说没有意义。这是我的代码:
#clicks, conversion, bounce and search are lists of values.
clicks=[2,0,0,8,7,...]
conversion = [1,0,0,6,0...]
bounce = [2,4,5,0,1....]
X = np.array([clicks,conversion, bounce]).T
y = np.array(search)
num_clusters = 5
pca=PCA(n_components=2, whiten=True)
data2D = pca.fit_transform(X)
print data2D
>>> [[-0.07187948 -0.17784291]
[-0.07173769 -0.26868727]
[-0.07173789 -0.26867958]
...,
[-0.06942414 -0.25040886]
[-0.06950897 -0.19591147]
[-0.07172973 -0.2687937 ]]
km = KMeans(n_clusters=num_clusters, init='k-means++',n_init=10, verbose=1)
km.fit_transform(X)
labels=km.labels_
centers2D = pca.fit_transform(km.cluster_centers_)
colors=['#000000','#FFFFFF','#FF0000','#00FF00','#0000FF']
col_map=dict(zip(set(labels),colors))
label_color = [col_map[l] for l in labels]
plt.scatter( data2D[:,0], data2D[:,1], c=label_color)
plt.hold(True)
plt.scatter(centers2D[:,0], centers2D[:,1], marker='x', c='r')
plt.show()
红色十字架是群集的中心。任何帮助都会很棒。
答案 0 :(得分:3)
你订购的PCA和KMeans搞砸了......
PCA
上执行X
将尺寸从5缩小为2并生成Data2D
Data2D
与KMeans
Centroids
。{/ li>之上绘制Data2D
醇>
PCA
上执行X
将尺寸从5缩小为2以生成Data2D
X
分为5个维度。PCA
,这会为质心生成完全不同的2D子空间。Data2D
并将PCA
缩小的质心放在顶部,即使这些质心不再正确耦合。看看下面的代码,你会发现它将质心放在需要的位置。规范化是关键,完全可逆。群集时始终规范化数据,因为距离指标需要平均移动所有空间。聚类是规范化数据的最重要时刻之一,但总的来说......总是正常化: - )
降维的整个要点是使KMeans聚类更容易,并预测出不会增加数据方差的维度。因此,您应该将简化数据传递给聚类算法。我将补充说,很少有5D数据集可以投影到2D而不会产生很多差异,即查看PCA诊断以查看是否已保留90%的原始方差。如果没有,那么你可能不想在你的PCA中如此咄咄逼人。
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from sklearn.cluster import KMeans
import seaborn as sns
%matplotlib inline
# read your data, replace 'stackoverflow.csv' with your file path
df = pd.read_csv('/Users/angus/Desktop/Downloads/stackoverflow.csv', usecols[0, 2, 4],names=['freq', 'visit_length', 'conversion_cnt'],header=0).dropna()
df.describe()
#Normalize the data
df_norm = (df - df.mean()) / (df.max() - df.min())
num_clusters = 5
pca=PCA(n_components=2)
UnNormdata2D = pca.fit_transform(df_norm)
# Check the resulting varience
var = pca.explained_variance_ratio_
print "Varience after PCA: ",var
#Normalize again following PCA: data2D
data2D = (UnNormdata2D - UnNormdata2D.mean()) / (UnNormdata2D.max()-UnNormdata2D.min())
print "Data2D: "
print data2D
km = KMeans(n_clusters=num_clusters, init='k-means++',n_init=10, verbose=1)
km.fit_transform(data2D)
labels=km.labels_
centers2D = km.cluster_centers_
colors=['#000000','#FFFFFF','#FF0000','#00FF00','#0000FF']
col_map=dict(zip(set(labels),colors))
label_color = [col_map[l] for l in labels]
plt.scatter( data2D[:,0], data2D[:,1], c=label_color)
plt.hold(True)
plt.scatter(centers2D[:,0], centers2D[:,1],marker='x',s=150.0,color='purple')
plt.show()
Varience after PCA: [ 0.65725709 0.29875307]
Data2D:
[[-0.00338421 -0.0009403 ]
[-0.00512081 -0.00095038]
[-0.00512081 -0.00095038]
...,
[-0.00477349 -0.00094836]
[-0.00373153 -0.00094232]
[-0.00512081 -0.00095038]]
Initialization complete
Iteration 0, inertia 51.225
Iteration 1, inertia 38.597
Iteration 2, inertia 36.837
...
...
Converged at iteration 31
希望这有帮助!
答案 1 :(得分:1)
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from sklearn.cluster import KMeans
# read your data, replace 'stackoverflow.csv' with your file path
df = pd.read_csv('stackoverflow.csv', usecols=[0, 2, 4], names=['freq', 'visit_length', 'conversion_cnt'], header=0).dropna()
df.describe()
Out[3]:
freq visit_length conversion_cnt
count 289705.0000 289705.0000 289705.0000
mean 0.2624 20.7598 0.0748
std 0.4399 55.0571 0.2631
min 0.0000 1.0000 0.0000
25% 0.0000 6.0000 0.0000
50% 0.0000 10.0000 0.0000
75% 1.0000 21.0000 0.0000
max 1.0000 2500.0000 1.0000
# binarlize freq and conversion_cnt
df.freq = np.where(df.freq > 1.0, 1, 0)
df.conversion_cnt = np.where(df.conversion_cnt > 0.0, 1, 0)
feature_names = df.columns
X_raw = df.values
transformer = PCA(n_components=2)
X_2d = transformer.fit_transform(X_raw)
# over 99.9% variance captured by 2d data
transformer.explained_variance_ratio_
Out[4]: array([ 9.9991e-01, 6.6411e-05])
# do clustering
estimator = KMeans(n_clusters=5, init='k-means++', n_init=10, verbose=1)
estimator.fit(X_2d)
labels = estimator.labels_
colors = ['#000000','#FFFFFF','#FF0000','#00FF00','#0000FF']
col_map=dict(zip(set(labels),colors))
label_color = [col_map[l] for l in labels]
fig, ax = plt.subplots()
ax.scatter(X_2d[:,0], X_2d[:,1], c=label_color)
ax.scatter(estimator.cluster_centers_[:,0], estimator.cluster_centers_[:,1], marker='x', s=50, c='r')
KMeans
尝试最小化群内欧几里德距离,这可能适合您的数据,也可能不适合您的数据。只是基于图表,我会考虑使用Gaussian Mixture Model
进行无监督的聚类。
此外,如果您对哪些观察可能归类为哪个类别/标签有更好的了解,则可以进行半监督学习。