为了了解我应该期待什么样的速度,我一直在尝试在全局内存和着色器之间进行基准测试,而不是依赖于GPU规格表。但是我无法接近理论上的最大值。事实上,我已经超出了 50 !
我正在使用GTX Titan X,即said to have 336.5GB/s。 Linux x64驱动程序352.21。
我找到了一个CUDA基准here,它给了我~240-250GB / s(这是我期望的更多)。
我正在尝试将它们与着色器完全匹配。我尝试了顶点着色器,计算着色器,通过image_load_store和NV_shader_buffer_store访问缓冲区对象,在着色器内部使用float
s,vec4
s循环(内部有合并的寻址)工作组)和各种计时方法。我停留在~7GB / s(见下面的更新)。
为什么GL这么慢?我做错了什么,如果是的话,应该怎么做?
这是我的MWE有三种方法(1.顶点着色器与image_load_store,2。顶点着色器与无绑定图形,3。计算着色器与无绑定图形):
//#include <windows.h>
#include <assert.h>
#include <stdio.h>
#include <memory.h>
#include <GL/glew.h>
#include <GL/glut.h>
const char* imageSource =
"#version 440\n"
"uniform layout(r32f) imageBuffer data;\n"
"uniform float val;\n"
"void main() {\n"
" imageStore(data, gl_VertexID, vec4(val, 0.0, 0.0, 0.0));\n"
" gl_Position = vec4(0.0);\n"
"}\n";
const char* bindlessSource =
"#version 440\n"
"#extension GL_NV_gpu_shader5 : enable\n"
"#extension GL_NV_shader_buffer_load : enable\n"
"uniform float* data;\n"
"uniform float val;\n"
"void main() {\n"
" data[gl_VertexID] = val;\n"
" gl_Position = vec4(0.0);\n"
"}\n";
const char* bindlessComputeSource =
"#version 440\n"
"#extension GL_NV_gpu_shader5 : enable\n"
"#extension GL_NV_shader_buffer_load : enable\n"
"layout(local_size_x = 256) in;\n"
"uniform float* data;\n"
"uniform float val;\n"
"void main() {\n"
" data[gl_GlobalInvocationID.x] = val;\n"
"}\n";
GLuint compile(GLenum type, const char* shaderSrc)
{
GLuint shader = glCreateShader(type);
glShaderSource(shader, 1, (const GLchar**)&shaderSrc, NULL);
glCompileShader(shader);
int success = 0;
int loglen = 0;
glGetShaderiv(shader, GL_COMPILE_STATUS, &success);
glGetShaderiv(shader, GL_INFO_LOG_LENGTH, &loglen);
GLchar* log = new GLchar[loglen];
glGetShaderInfoLog(shader, loglen, &loglen, log);
if (!success)
{
printf("%s\n", log);
exit(0);
}
GLuint program = glCreateProgram();
glAttachShader(program, shader);
glLinkProgram(program);
return program;
}
GLuint timerQueries[2];
void start()
{
glGenQueries(2, timerQueries);
glQueryCounter(timerQueries[0], GL_TIMESTAMP);
}
float stop()
{
glMemoryBarrier(GL_ALL_BARRIER_BITS);
GLsync sync = glFenceSync(GL_SYNC_GPU_COMMANDS_COMPLETE, 0);
glWaitSync(sync, 0, GL_TIMEOUT_IGNORED);
glQueryCounter(timerQueries[1], GL_TIMESTAMP);
GLint available = 0;
while (!available) //sometimes gets stuck here for whatever reason
glGetQueryObjectiv(timerQueries[1], GL_QUERY_RESULT_AVAILABLE, &available);
GLuint64 a, b;
glGetQueryObjectui64v(timerQueries[0], GL_QUERY_RESULT, &a);
glGetQueryObjectui64v(timerQueries[1], GL_QUERY_RESULT, &b);
glDeleteQueries(2, timerQueries);
return b - a;
}
int main(int argc, char** argv)
{
float* check;
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH);
glutCreateWindow("test");
glewInit();
int bufferSize = 64 * 1024 * 1024; //64MB
int loops = 500;
glEnable(GL_RASTERIZER_DISCARD);
float* dat = new float[bufferSize/sizeof(float)];
memset(dat, 0, bufferSize);
//create a buffer with data
GLuint buffer;
glGenBuffers(1, &buffer);
glBindBuffer(GL_TEXTURE_BUFFER, buffer);
glBufferData(GL_TEXTURE_BUFFER, bufferSize, NULL, GL_STATIC_DRAW);
//get a bindless address
GLuint64 address;
glMakeBufferResidentNV(GL_TEXTURE_BUFFER, GL_READ_WRITE);
glGetBufferParameterui64vNV(GL_TEXTURE_BUFFER, GL_BUFFER_GPU_ADDRESS_NV, &address);
//make a texture alias for it
GLuint bufferTexture;
glGenTextures(1, &bufferTexture);
glBindTexture(GL_TEXTURE_BUFFER, bufferTexture);
glTexBuffer(GL_TEXTURE_BUFFER, GL_R32F, buffer);
glBindImageTextureEXT(0, bufferTexture, 0, GL_FALSE, 0, GL_READ_WRITE, GL_R32F);
//compile the shaders
GLuint imageShader = compile(GL_VERTEX_SHADER, imageSource);
GLuint bindlessShader = compile(GL_VERTEX_SHADER, bindlessSource);
GLuint bindlessComputeShader = compile(GL_COMPUTE_SHADER, bindlessComputeSource);
//warm-up and check values
glBufferData(GL_TEXTURE_BUFFER, bufferSize, dat, GL_STATIC_DRAW);
glUseProgram(imageShader);
glUniform1i(glGetUniformLocation(imageShader, "data"), 0);
glUniform1f(glGetUniformLocation(imageShader, "val"), 1.0f);
glDrawArrays(GL_POINTS, 0, bufferSize/sizeof(float));
glMemoryBarrier(GL_SHADER_IMAGE_ACCESS_BARRIER_BIT);
//check = (float*)glMapBuffer(GL_TEXTURE_BUFFER, GL_READ_ONLY);
//for (int i = 0; i < bufferSize/sizeof(float); ++i)
// assert(check[i] == 1.0f);
//glUnmapBuffer(GL_TEXTURE_BUFFER);
glBufferData(GL_TEXTURE_BUFFER, bufferSize, dat, GL_STATIC_DRAW);
glUseProgram(bindlessShader);
glProgramUniformui64NV(bindlessShader, glGetUniformLocation(bindlessShader, "data"), address);
glUniform1f(glGetUniformLocation(bindlessShader, "val"), 1.0f);
glDrawArrays(GL_POINTS, 0, bufferSize/sizeof(float));
//glMemoryBarrier(GL_ALL_BARRIER_BITS); //this causes glDispatchCompute to segfault later, so don't uncomment
//check = (float*)glMapBuffer(GL_TEXTURE_BUFFER, GL_READ_ONLY);
//for (int i = 0; i < bufferSize/sizeof(float); ++i)
// assert(check[i] == 1.0f);
//glUnmapBuffer(GL_TEXTURE_BUFFER);
glBufferData(GL_TEXTURE_BUFFER, bufferSize, dat, GL_STATIC_DRAW);
glUseProgram(bindlessComputeShader);
glProgramUniformui64NV(bindlessComputeShader, glGetUniformLocation(bindlessComputeShader, "data"), address);
glUniform1f(glGetUniformLocation(bindlessComputeShader, "val"), 1.0f);
glDispatchCompute(bufferSize/(sizeof(float) * 256), 1, 1);
glMemoryBarrier(GL_ALL_BARRIER_BITS);
//check = (float*)glMapBuffer(GL_TEXTURE_BUFFER, GL_READ_ONLY);
//for (int i = 0; i < bufferSize/sizeof(float); ++i)
// assert(check[i] == 1.0f); //glDispatchCompute doesn't actually write anything with bindless graphics
//glUnmapBuffer(GL_TEXTURE_BUFFER);
glFinish();
//time image_load_store
glUseProgram(imageShader);
glUniform1i(glGetUniformLocation(imageShader, "data"), 0);
glUniform1f(glGetUniformLocation(imageShader, "val"), 1.0f);
start();
for (int i = 0; i < loops; ++i)
glDrawArrays(GL_POINTS, 0, bufferSize/sizeof(float));
GLuint64 imageTime = stop();
printf("image_load_store: %.2fGB/s\n", (float)((bufferSize * (double)loops) / imageTime));
//time bindless
glUseProgram(bindlessShader);
glProgramUniformui64NV(bindlessShader, glGetUniformLocation(bindlessShader, "data"), address);
glUniform1f(glGetUniformLocation(bindlessShader, "val"), 1.0f);
start();
for (int i = 0; i < loops; ++i)
glDrawArrays(GL_POINTS, 0, bufferSize/sizeof(float));
GLuint64 bindlessTime = stop();
printf("bindless: %.2fGB/s\n", (float)((bufferSize * (double)loops) / bindlessTime));
//time bindless in a compute shader
glUseProgram(bindlessComputeShader);
glProgramUniformui64NV(bindlessComputeShader, glGetUniformLocation(bindlessComputeShader, "data"), address);
glUniform1f(glGetUniformLocation(bindlessComputeShader, "val"), 1.0f);
start();
for (int i = 0; i < loops; ++i)
glDispatchCompute(bufferSize/(sizeof(float) * 256), 1, 1);
GLuint64 bindlessComputeTime = stop();
printf("bindless compute: %.2fGB/s\n", (float)((bufferSize * (double)loops) / bindlessComputeTime));
assert(glGetError() == GL_NO_ERROR);
return 0;
}
我的输出:
image_load_store: 6.66GB/s
bindless: 6.68GB/s
bindless compute: 6.65GB/s
一些注意事项:
glMapBuffer
检索数据,即使速度与其他方法匹配。在计算着色器中使用image_load_store并使顶点着色器具有相同的速度(尽管我认为这是一个过多的排列发布)。glMemoryBarrier(GL_ALL_BARRIER_BITS)
之前调用glDispatchCompute
会导致驱动程序崩溃。glBufferData(GL_TEXTURE_BUFFER, bufferSize, dat, GL_STATIC_DRAW);
,将前两个测试的速度提高到17GB / s,计算着色器突然增加到292GB / s,这比我更接近d喜欢,但由于第1点,这不能被信任。while (!available)
会挂起很长时间(当我厌倦了等待时,ctrl-c会显示它仍在循环中)。供参考,这是CUDA代码:
//http://www.ks.uiuc.edu/Research/vmd/doxygen/CUDABench_8cu-source.html
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <cuda.h>
#define CUERR { cudaError_t err; \
if ((err = cudaGetLastError()) != cudaSuccess) { \
printf("CUDA error: %s, %s line %d\n", cudaGetErrorString(err), __FILE__, __LINE__); \
return -1; }}
//
// GPU device global memory bandwidth benchmark
//
template <class T>
__global__ void gpuglobmemcpybw(T *dest, const T *src) {
const unsigned int idx = threadIdx.x + blockIdx.x * blockDim.x;
dest[idx] = src[idx];
}
template <class T>
__global__ void gpuglobmemsetbw(T *dest, const T val) {
int idx = threadIdx.x + blockIdx.x * blockDim.x;
dest[idx] = val;
}
typedef float4 datatype;
static int cudaglobmembw(int cudadev, double *gpumemsetgbsec, double *gpumemcpygbsec) {
int i;
int len = 1 << 22; // one thread per data element
int loops = 500;
datatype *src, *dest;
datatype val=make_float4(1.0f, 1.0f, 1.0f, 1.0f);
// initialize to zero for starters
float memsettime = 0.0f;
float memcpytime = 0.0f;
*gpumemsetgbsec = 0.0;
*gpumemcpygbsec = 0.0;
// attach to the selected device
cudaError_t rc;
rc = cudaSetDevice(cudadev);
if (rc != cudaSuccess) {
#if CUDART_VERSION >= 2010
rc = cudaGetLastError(); // query last error and reset error state
if (rc != cudaErrorSetOnActiveProcess)
return -1; // abort and return an error
#else
cudaGetLastError(); // just ignore and reset error state, since older CUDA
// revs don't have a cudaErrorSetOnActiveProcess enum
#endif
}
cudaMalloc((void **) &src, sizeof(datatype)*len);
CUERR
cudaMalloc((void **) &dest, sizeof(datatype)*len);
CUERR
dim3 BSz(256, 1, 1);
dim3 GSz(len / (BSz.x * BSz.y * BSz.z), 1, 1);
// do a warm-up pass
gpuglobmemsetbw<datatype><<< GSz, BSz >>>(src, val);
CUERR
gpuglobmemsetbw<datatype><<< GSz, BSz >>>(dest, val);
CUERR
gpuglobmemcpybw<datatype><<< GSz, BSz >>>(dest, src);
CUERR
cudaEvent_t start, end;
cudaEventCreate(&start);
cudaEventCreate(&end);
// execute the memset kernel
cudaEventRecord(start, 0);
for (i=0; i<loops; i++) {
gpuglobmemsetbw<datatype><<< GSz, BSz >>>(dest, val);
}
CUERR
cudaEventRecord(end, 0);
CUERR
cudaEventSynchronize(start);
CUERR
cudaEventSynchronize(end);
CUERR
cudaEventElapsedTime(&memsettime, start, end);
CUERR
// execute the memcpy kernel
cudaEventRecord(start, 0);
for (i=0; i<loops; i++) {
gpuglobmemcpybw<datatype><<< GSz, BSz >>>(dest, src);
}
cudaEventRecord(end, 0);
CUERR
cudaEventSynchronize(start);
CUERR
cudaEventSynchronize(end);
CUERR
cudaEventElapsedTime(&memcpytime, start, end);
CUERR
cudaEventDestroy(start);
CUERR
cudaEventDestroy(end);
CUERR
*gpumemsetgbsec = (len * sizeof(datatype) / (1024.0 * 1024.0)) / (memsettime / loops);
*gpumemcpygbsec = (2 * len * sizeof(datatype) / (1024.0 * 1024.0)) / (memcpytime / loops);
cudaFree(dest);
cudaFree(src);
CUERR
return 0;
}
int main()
{
double a, b;
cudaglobmembw(0, &a, &b);
printf("%f %f\n", (float)a, (float)b);
return 0;
}
更新
似乎缓冲区在我的glBufferData
调用中被非驻留,这些调用正在检查输出是否被写入。根据{{3}}:
由于通过BufferData重新指定或被删除,缓冲区也被隐式地非驻留 ...
BufferData被指定为“删除现有数据存储”, 所以该数据的GPU地址应该变为无效。缓冲区是 因此在当前背景下成为非居民。
据猜测,OpenGL然后每帧流入缓冲区对象数据,并不将其缓存在视频内存中。这解释了为什么计算着色器使断言失败,但是有一点轻微的异常,顶点着色器中的无绑定图形在不驻留时仍然有效,但我现在将忽略它。我不知道为什么64MB缓冲区对象不会默认为12GB可用时驻留(尽管可能在第一次使用后)。
因此,在每次调用glBufferData
之后,我再次将其设置为驻留并获取地址以防其更改:
glBufferData(GL_TEXTURE_BUFFER, bufferSize, dat, GL_STATIC_DRAW);
glMakeBufferResidentNV(GL_TEXTURE_BUFFER, GL_READ_WRITE);
glGetBufferParameterui64vNV(GL_TEXTURE_BUFFER, GL_BUFFER_GPU_ADDRESS_NV, &address);
assert(glIsBufferResidentNV(GL_TEXTURE_BUFFER)); //sanity check
我现在使用 image_load_store或无绑定图形使用计算着色器获得270-290GB / s。 现在我的问题包括:
如果没有无绑定图形扩展,常规OpenGL用户应该如何将数据放入视频内存(实际上 put 而不是空闲地暗示驱动程序可能只是喜欢)?
我很确定在实际情况下我会注意到这个问题,并且这个设计的基准测试会遇到一条缓慢的路径,所以我怎么能欺骗驱动程序使缓冲区对象驻留?首先运行计算着色器不会改变任何内容。
答案 0 :(得分:1)
您要求驱动程序从您的进程内存中读取dat
。这会导致广泛的缓存一致性流量。当GPU读取该内存时,它无法确定它是否是最新的,它可能位于CPU缓存中,已修改,并且尚未写回RAM。这导致GPU实际上必须从CPU缓存读取,这比绕过CPU和读取RAM要昂贵得多。 RAM在正常操作期间通常处于空闲状态,因为现代CPU的命中率通常为95%至99%。缓存连续使用。
要获得最佳性能,您需要让驱动程序分配内存。程序使用的正常内存,如全局变量,堆在 writeback 内存中分配。驱动程序分配的内存通常会被分配为写入组合或不可缓存,从而消除了一致性流量。
只有在没有缓存一致性开销的情况下才能实现峰值通告带宽数量。
要让驱动程序分配它,请使用glBufferData
和nullptr
作为数据。
但是,如果你设法强制驱动程序使用系统内存写入组合缓冲区,那么它并不完美。 CPU读取到这些地址将非常慢。顺序写入由CPU优化,但随机写入将导致写入组合缓冲区频繁刷新,从而损害性能。