我在Azure ML中创建了一个简单的实验,并使用http客户端触发它。在Azure ML工作区中,执行时一切正常。但是,当我使用http客户端触发实验时,实验会超时并失败。设置http客户端的超时值似乎不起作用。
我们是否可以设置此超时值以便实验不会失败?
答案 0 :(得分:1)
确保正确设置客户端超时值。如果为Web服务供电的服务器超时,则它将发回一个HTTP状态代码504 BackendScoreTimeout
(或可能409 GatewayTimeout
)的响应。但是,如果您根本没有收到回复,那么您的客户就不会等待足够长的时间。
您可以在ML Studio中运行实验,从而获得大量时间。转到实验属性以查找其运行时间,然后将该时间量的两倍作为超时值。
答案 1 :(得分:1)
我发布的Azure ML实验与Web服务有类似的问题。大多数时候它运行正常,而有时它返回时出现超时错误。问题是实验本身有 90秒的运行时间限制。因此,很可能您的实验的运行时间超过此限制并返回超时错误。 HTH
答案 2 :(得分:0)
看起来无法根据a feature request that is still marked as "planned" as of 4/1/2018设置此超时。
来自MSDN forums from 2017的建议是使用批处理执行服务,该服务启动机器学习实验,然后异步询问是否已完成。
以下是Azure ML Web服务管理示例代码中的代码段(所有注释均来自其示例代码):
using (HttpClient client = new HttpClient())
{
var request = new BatchExecutionRequest()
{
Outputs = new Dictionary<string, AzureBlobDataReference> () {
{
"output",
new AzureBlobDataReference()
{
ConnectionString = storageConnectionString,
RelativeLocation = string.Format("{0}/outputresults.file_extension", StorageContainerName) /*Replace this with the location you would like to use for your output file, and valid file extension (usually .csv for scoring results, or .ilearner for trained models)*/
}
},
},
GlobalParameters = new Dictionary<string, string>() {
}
};
client.DefaultRequestHeaders.Authorization = new AuthenticationHeaderValue("Bearer", apiKey);
// WARNING: The 'await' statement below can result in a deadlock
// if you are calling this code from the UI thread of an ASP.Net application.
// One way to address this would be to call ConfigureAwait(false)
// so that the execution does not attempt to resume on the original context.
// For instance, replace code such as:
// result = await DoSomeTask()
// with the following:
// result = await DoSomeTask().ConfigureAwait(false)
Console.WriteLine("Submitting the job...");
// submit the job
var response = await client.PostAsJsonAsync(BaseUrl + "?api-version=2.0", request);
if (!response.IsSuccessStatusCode)
{
await WriteFailedResponse(response);
return;
}
string jobId = await response.Content.ReadAsAsync<string>();
Console.WriteLine(string.Format("Job ID: {0}", jobId));
// start the job
Console.WriteLine("Starting the job...");
response = await client.PostAsync(BaseUrl + "/" + jobId + "/start?api-version=2.0", null);
if (!response.IsSuccessStatusCode)
{
await WriteFailedResponse(response);
return;
}
string jobLocation = BaseUrl + "/" + jobId + "?api-version=2.0";
Stopwatch watch = Stopwatch.StartNew();
bool done = false;
while (!done)
{
Console.WriteLine("Checking the job status...");
response = await client.GetAsync(jobLocation);
if (!response.IsSuccessStatusCode)
{
await WriteFailedResponse(response);
return;
}
BatchScoreStatus status = await response.Content.ReadAsAsync<BatchScoreStatus>();
if (watch.ElapsedMilliseconds > TimeOutInMilliseconds)
{
done = true;
Console.WriteLine(string.Format("Timed out. Deleting job {0} ...", jobId));
await client.DeleteAsync(jobLocation);
}
switch (status.StatusCode) {
case BatchScoreStatusCode.NotStarted:
Console.WriteLine(string.Format("Job {0} not yet started...", jobId));
break;
case BatchScoreStatusCode.Running:
Console.WriteLine(string.Format("Job {0} running...", jobId));
break;
case BatchScoreStatusCode.Failed:
Console.WriteLine(string.Format("Job {0} failed!", jobId));
Console.WriteLine(string.Format("Error details: {0}", status.Details));
done = true;
break;
case BatchScoreStatusCode.Cancelled:
Console.WriteLine(string.Format("Job {0} cancelled!", jobId));
done = true;
break;
case BatchScoreStatusCode.Finished:
done = true;
Console.WriteLine(string.Format("Job {0} finished!", jobId));
ProcessResults(status);
break;
}
if (!done) {
Thread.Sleep(1000); // Wait one second
}
}
}