我正在尝试在Python Pandas中执行一些算术运算,并将结果合并到其中一个文件中。
Path_1: File_1.csv, File_2.csv, ....
此路径有几个文件,应该在时间间隔内增加。以下列
File_1.csv | File_2.csv
Nos,12:00:00 | Nos,12:30:00
123,1451 485,5464
656,4544 456,4865
853,5484 658,4584
Path_2: Master_1.csv
Nos,00:00:00
123,2000
485,1500
656,1000
853,2500
456,4500
658,5000
我正在尝试从n
中读取.csv
个Path_1
个col[1]
个文件,并将col[last]
标题时间序列与Master_1.csv
个时间序列{{1}进行比较}。
如果Master_1.csv
没有时间,则应创建一个包含path_1 .csv
个文件的时间序列的新列,并在尊重col['Nos']
时更新值,同时从col[1]
减去Master_1.csv
col
。
如果来自path_1 file
的时间col['Nos']
存在,则查找NAN
,然后将col['Nos']
替换为相对于Nos,00:00:00,12:00:00,12:30:00,
123,2000,549,NAN,
485,1500,NAN,3964,
656,1000,3544,NAN
853,2500,2984,NAN
456,4500,NAN,365
658,5000,NAN,-416
的减去值。
即。
Master_1.csv中的预期输出
Nos
我可以理解算术计算,但我无法循环使用timeseries
和import pandas as pd
import numpy as np
path_1 = '/'
path_2 = '/'
df_1 = pd.read_csv(os.path_1('/.*csv'), Index=None, columns=['Nos', 'timeseries'] #times series is different in every file eg: 12:00, 12:30, 17:30 etc
df_2 = pd.read_csv('master_1.csv', Index=None, columns=['Nos', '00:00:00']) #00:00:00 time series
for Nos in df_1 and df_2:
df_1['Nos'] = df_2['Nos']
new_tseries = df_2['00:00:00'] - df_1['timeseries']
merged.concat('master_1.csv', Index=None, columns=['Nos', '00:00:00', 'new_tseries'], axis=0) # new_timeseries is the dynamic time series that every .csv file will have from path_1
我试图将一些代码放在一起并尝试解决循环问题。在这方面需要帮助。谢谢
//setting the preview surface layout file
<?xml version="1.0" encoding="utf-8"?>
答案 0 :(得分:2)
您可以分三步完成
以下是您可以尝试的一些代码:
#read dataframes into a list
import glob
L = []
for fname in glob.glob(path_1+'*.csv'):
L.append(df.read_csv(fname))
#read master dataframe, and merge in other dataframes
df_2 = pd.read_csv('master_1.csv')
for df in L:
df_2 = pd.merge(df_2,df, on = 'Nos', how = 'left')
#for each column, caluculate the difference with the master column
df_2.apply(lambda x: x - df_2['00:00:00'])