我在.h5文件中有一个非常庞大的python表 表格的开头看起来像这样:
table =
[WIND REL DIRECTION [deg]] [WIND SPEED [kts]] \
735381.370833 0 0.000000
735381.370845 0 0.000000
735381.370880 0 0.000000
735381.370891 0 0.000000
735381.370903 0 0.000000
735381.370972 0 0.000000
735381.370984 0 0.000000
735381.370995 0 0.000000
735381.371007 0 0.000000
735381.371019 0 0.000000
...
索引行是数据的时间戳。我需要每隔15秒计算一次风速WIND REL SPEED和WIND SPEED,然后把它变成一行。我真的需要以有效的方式做到这一点,这个.h5文件非常庞大。
以下是一些相关代码:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from pylab import *
import matplotlib.dates as pltd
import tables
pltd.num2date(table.index) #to turn the timestamp into a date
我在这里很无能为力,所有的帮助都表示赞赏。
答案 0 :(得分:2)
resample
是你的朋友。
idx = pltd.num2date(table.index)
df = pd.DataFrame({'direction': np.random.randn(10),
'speed': np.random.randn(10)},
index=idx)
>>> df
direction speed
2014-05-28 08:53:59.971204+00:00 0.205429 0.699439
2014-05-28 08:54:01.008002+00:00 0.383199 -0.392261
2014-05-28 08:54:04.031995+00:00 -2.146569 -0.325526
2014-05-28 08:54:04.982402+00:00 1.572352 1.289276
2014-05-28 08:54:06.019200+00:00 0.880394 -0.440667
2014-05-28 08:54:11.980795+00:00 -1.343758 0.615725
2014-05-28 08:54:13.017603+00:00 -1.713043 0.552017
2014-05-28 08:54:13.968000+00:00 -0.350017 0.728910
2014-05-28 08:54:15.004798+00:00 -0.619273 0.286762
2014-05-28 08:54:16.041596+00:00 0.459747 0.524788
>>> df.resample('15S', how='mean') # how='mean' is the default here
direction speed
2014-05-28 08:53:45+00:00 0.205429 0.699439
2014-05-28 08:54:00+00:00 -0.388206 0.289639
2014-05-28 08:54:15+00:00 -0.079763 0.405775
性能类似于@LondonRob提供的方法。我使用了一个包含100万行的DataFrame进行测试。
df = pd.DataFrame({'direction': np.random.randn(1e6), 'speed': np.random.randn(1e6)}, index=pd.date_range(start='2015-1-1', periods=1e6, freq='1S'))
>>> %timeit df.resample('15S')
100 loops, best of 3: 15.6 ms per loop
>>> %timeit df.groupby(pd.TimeGrouper(freq='15S')).mean()
100 loops, best of 3: 15.7 ms per loop
答案 1 :(得分:0)
我认为这是"对"这样做的方式。 (虽然看起来对我来说似乎有点不了解。无论如何它都有效!)
您需要在DataFrame上执行groupby
并使用名为TimeGrouper
的内容。
它的工作原理如下:
import pandas as pd
import numpy as np
# Create a dataframe. You can ignore all this bit!
periods = 60 * 60
random_dates = pd.date_range('2015-12-25', periods=periods, freq='s')
random_speeds = np.random.randint(100, size=periods)
random_directions = np.random.random(periods)
df = pd.DataFrame({'date': random_dates, 'wind_speed': random_speeds, 'wind_direction': random_directions})
df = df.set_index('date')
# Here's where the magic happens:
grouped15s = df.groupby(pd.TimeGrouper(freq='15S'))
averages_ws_15s = grouped15s.wind_speed.mean()
或者,如果您坚持在列名中包含空格,那么最后一行将变为:
averages_ws_15s = grouped15s['Wind Speed'].mean()
这导致以下结果:
date
2015-12-25 00:00:00 45.800000
2015-12-25 00:00:15 48.466667
2015-12-25 00:00:30 38.066667
2015-12-25 00:00:45 54.866667
2015-12-25 00:01:00 34.866667
2015-12-25 00:01:15 37.000000
2015-12-25 00:01:30 47.133333
etc.... etc....