我有一些大于10 GB的数据集(tsv格式),我需要hdf5格式。我正在使用Python。我读过有关Pandas软件包在读取文件并将其存储为hdf5时不占用太多内存的问题。但是,如果没有我的机器耗尽内存,我无法这样做。我也曾尝试过Spark,但在那里我感觉不舒服。那么,除了在内存中读取大量文件之外,我还有什么替代解决方案?
答案 0 :(得分:-1)
import pandas as pd
import numpy as np
# I use python3.4
# if your python version is 2.x, replace it with 'import StringIO'
import io
# generate some 'large' tsv
raw_data = pd.DataFrame(np.random.randn(10000, 5), columns='A B C D E'.split())
raw_tsv = raw_data.to_csv(sep='\t')
# start to read csv in chunks, 50 rows per chunk (adjust it to the potential of your PC)
# the use of StringIO is just to provide a string buffer, you don't need this
# if you are reading from an external file, just put the file path there
file_reader = pd.read_csv(filepath_or_buffer=io.StringIO(raw_tsv), sep='\t', chunksize=50)
# try to show you what's inside each chunk
# if you type: list(file_reader)[0]
# exactly 50 rows
# don't do this in your real processing, file_reader is a lazy generator
# and it can only be consumed once
Unnamed: 0 A B C D E
0 0 -1.2553 0.1386 0.6201 0.1014 -0.4067
1 1 -1.0127 -0.8122 -0.0850 -0.1887 -0.9169
2 2 0.5512 0.7816 0.0729 -1.1310 -0.8213
3 3 0.1159 1.1608 -0.4519 -2.1344 0.1520
4 4 -0.5375 -0.6034 0.7518 -0.8381 0.3100
5 5 0.5895 0.5698 -0.9438 3.4536 0.5415
6 6 -1.2809 0.5412 0.5298 -0.8242 1.8116
7 7 0.7242 -1.6750 1.0408 -0.1195 0.6617
8 8 -1.4313 -0.4498 -1.6069 -0.7309 -1.1688
9 9 -0.3073 0.3158 0.6478 -0.6361 -0.7203
.. ... ... ... ... ... ...
40 40 -0.3143 -1.9459 0.0877 -0.0310 -2.3967
41 41 -0.8487 0.1104 1.2564 1.0890 0.6501
42 42 1.6665 -0.0094 -0.0889 1.3877 0.7752
43 43 0.9872 -1.5167 0.0059 0.4917 1.8728
44 44 0.4096 -1.2913 1.7731 0.3443 1.0094
45 45 -0.2633 1.8474 -1.0781 -1.4475 -0.2212
46 46 -0.2872 -0.0600 0.0958 -0.2526 0.1531
47 47 -0.7517 -0.1358 -0.5520 -1.0533 -1.0962
48 48 0.8421 -0.8751 0.5380 0.7147 1.0812
49 49 -0.8216 1.0702 0.8911 0.5189 -0.1725
[50 rows x 6 columns]
# set up your HDF5 file with highest possible compress ratio 9
h5_file = pd.HDFStore('your_hdf5_file.h5', complevel=9, complib='blosc')
h5_file
Out[18]:
<class 'pandas.io.pytables.HDFStore'>
File path: your_hdf5_file.h5
Empty
# now, start processing
for df_chunk in file_reader:
# must use append method
h5_file.append('big_data', df_chunk, complevel=9, complib='blosc')
# after processing, close hdf5 file
h5_file.close()
# check your hdf5 file,
pd.HDFStore('your_hdf5_file.h5')
# now it has all 10,000 rows, and we did this chunk by chunk
Out[21]:
<class 'pandas.io.pytables.HDFStore'>
File path: your_hdf5_file.h5
/big_data frame_table (typ->appendable,nrows->10000,ncols->6,indexers->[index])