我正在尝试清理语料库,我使用了典型的步骤,如下面的代码:
docs<-Corpus(DirSource(path))
docs<-tm_map(docs,content_transformer(tolower))
docs<-tm_map(docs,content_transformer(removeNumbers))
docs<-tm_map(docs,content_transformer(removePunctuation))
docs<-tm_map(docs,removeWords,stopwords('en'))
docs<-tm_map(docs,stripWhitespace)
docs<-tm_map(docs,stemDocument)
dtm<-DocumentTermMatrix(docs)
然而,当我检查矩阵时,几乎没有带引号的词,例如: “我们” “公司” “码 指南” -known -accelerated
似乎单词本身在引号内,但当我尝试再次运行removePunctuation代码时,它不起作用。前面还有一些带子弹的话我也无法删除。
非常感谢任何帮助。
答案 0 :(得分:10)
removePunctuation
使用gsub('[[:punct:]]','',x)
即删除符号:!"#$%&'()*+, \-./:;<=>?@[\\\]^_
{|}〜`。要删除其他符号,例如印刷引号或子弹符号(或任何其他符号),请声明自己的转换函数:
removeSpecialChars <- function(x) gsub("“•”","",x)
docs <- tm_map(docs, removeSpecialChars)
或者你可以进一步删除所有不是字母数字符号或空格的内容:
removeSpecialChars <- function(x) gsub("[^a-zA-Z0-9 ]","",x)
docs <- tm_map(docs, removeSpecialChars)
答案 1 :(得分:1)
更好的构造标记器将自动处理此问题。试试这个:
> require(quanteda)
> text <- c("Enjoying \"my time\".", "Single 'air quotes'.")
> toktexts <- tokenize(toLower(text), removePunct = TRUE, removeNumbers = TRUE)
> toktexts
[[1]]
[1] "enjoying" "my" "time"
[[2]]
[1] "single" "air" "quotes"
attr(,"class")
[1] "tokenizedTexts" "list"
> dfm(toktexts, stem = TRUE, ignoredFeatures = stopwords("english"), verbose = FALSE)
Creating a dfm from a tokenizedTexts object ...
... indexing 2 documents
... shaping tokens into data.table, found 6 total tokens
... stemming the tokens (english)
... ignoring 174 feature types, discarding 1 total features (16.7%)
... summing tokens by document
... indexing 5 feature types
... building sparse matrix
... created a 2 x 5 sparse dfm
... complete. Elapsed time: 0.016 seconds.
Document-feature matrix of: 2 documents, 5 features.
2 x 5 sparse Matrix of class "dfmSparse"
features
docs air enjoy quot singl time
text1 0 1 0 0 1
text2 1 0 1 1 0
答案 2 :(得分:0)
@ cyberj0g的答案需要对tm
(0.6)的最新版本进行少量修改。
更新后的代码可以编写如下:
removeSpecialChars <- function(x) gsub("[^a-zA-Z0-9 ]","",x)
corpus <- tm_map(corpus, content_transformer(removeSpecialChars))
感谢@ cyberj0g提供工作代码