我有一个数据数据框,我试图附加到另一个数据帧。我已经尝试过.append()的各种方法,并没有成功的方法。当我从iterrows打印数据时。我提供了两种可能的方法,我试图解决下面的问题,一种是创建错误,另一种是不用任何东西填充数据框。
我尝试创建的工作流程是基于包含客户订单交易历史记录的文件创建数据框。我只想为每个订单创建一个记录,我将添加其他逻辑以根据历史记录中的更新更新订单详细信息。在脚本结束时,在迭代历史文件之后,它将为所有订单和这些订单的最终状态提供单个记录。
class om():
"""Manages over the current state of orders"""
def __init__(self,dataF, desc='NONE'):
self.df = pd.DataFrame
self.data = dataF
print type(dataF)
self.oD= self.df(data=None,columns=desc)
def add_data(self,df):
for i, row in self.data.iterrows():
print 'row '+str(row)
print type(row)
df.append(self.data[i], ignore_index =True) """ This line creates and error"""
df.append(row, ignore_index =True) """This line doesn't append anything to the dataframe."""
test = order_manager(body,header)
test.add_data(test.orderData)
答案 0 :(得分:5)
使用.loc
扩大当前df
。请参阅下面的示例。
import pandas as pd
import numpy as np
date_rng = pd.date_range('2015-01-01', periods=200, freq='D')
df1 = pd.DataFrame(np.random.randn(100, 3), columns='A B C'.split(), index=date_rng[:100])
Out[410]:
A B C
2015-01-01 0.2799 0.4416 -0.7474
2015-01-02 -0.4983 0.1490 -0.2599
2015-01-03 0.4101 1.2622 -1.8081
2015-01-04 1.1976 -0.7410 0.4221
2015-01-05 1.3311 1.0399 2.2701
... ... ... ...
2015-04-06 -0.0432 0.6131 -0.0216
2015-04-07 0.4224 -1.1565 2.2285
2015-04-08 0.0663 1.2994 2.0322
2015-04-09 0.1958 -0.4412 0.3924
2015-04-10 0.1622 1.7603 1.4525
[100 rows x 3 columns]
df2 = pd.DataFrame(np.random.randn(100, 3), columns='A B C'.split(), index=date_rng[100:])
Out[411]:
A B C
2015-04-11 1.1196 -1.9627 0.6615
2015-04-12 -0.0098 1.7655 0.0447
2015-04-13 -1.7318 -2.0296 0.8384
2015-04-14 -1.5472 -1.7220 -0.3166
2015-04-15 2.5058 0.6487 1.0994
... ... ... ...
2015-07-15 -1.4803 2.1703 -1.9391
2015-07-16 -1.7595 -1.7647 -1.0622
2015-07-17 1.7900 0.2280 -1.8797
2015-07-18 0.7909 -0.4999 0.3848
2015-07-19 1.2243 0.4681 -1.2323
[100 rows x 3 columns]
# to move one row from df2 to df1, use .loc to enlarge df1
# this is far more efficient than pd.concat and pd.append
df1.loc[df2.index[0]] = df2.iloc[0]
Out[413]:
A B C
2015-01-01 0.2799 0.4416 -0.7474
2015-01-02 -0.4983 0.1490 -0.2599
2015-01-03 0.4101 1.2622 -1.8081
2015-01-04 1.1976 -0.7410 0.4221
2015-01-05 1.3311 1.0399 2.2701
... ... ... ...
2015-04-07 0.4224 -1.1565 2.2285
2015-04-08 0.0663 1.2994 2.0322
2015-04-09 0.1958 -0.4412 0.3924
2015-04-10 0.1622 1.7603 1.4525
2015-04-11 1.1196 -1.9627 0.6615
[101 rows x 3 columns]