让我们从previous question进行以下简单练习。
在R中输入以下代码,我们最终将P1
变量输出为:
library(Matching)
data(lalonde)
lalonde$ID <- 1:length(lalonde$age)
n <- 10
P1 <- rep(NA, n)
for (i in 1:n) {
lalonde <- lalonde[sample(1:nrow(lalonde)), ] # randomise the order
X <- cbind(lalonde$age, lalonde$educ, lalonde$black, lalonde$hisp,
lalonde$married, lalonde$nodegr, lalonde$u74, lalonde$u75,
lalonde$re75, lalonde$re74)
BalanceMat <- cbind(lalonde$age, lalonde$educ, lalonde$black,
lalonde$hisp, lalonde$married, lalonde$nodegr,
lalonde$u74, lalonde$u75, lalonde$re75, lalonde$re74,
I(lalonde$re74*lalonde$re75))
genout <- GenMatch(Tr=lalonde$treat, X=X, BalanceMatrix=BalanceMat, estimand="ATE",
pop.size=16, max.generations=10, wait.generations=1)
mout <- Match(Y=NULL, Tr=lalonde$treat, X=X,
Weight.matrix=genout,
replace=TRUE, ties=FALSE)
summary(mout)
treated <- lalonde[mout$index.treated, ]
treated$Pair_ID <- treated$ID
non.treated <- lalonde[mout$index.control, ]
non.treated$Pair_ID <- treated$ID
matched.data <- rbind(treated, non.treated)
matched.data <- matched.data[order(matched.data$Pair_ID), ]
P1[i] <- matched.data$ID[matched.data$Pair_ID == 1 & matched.data$treat == 0]
}
我们可以获得结果:
summary(as.factor(P1))
我注意到这是一个很低的CPU百分比,所以我调用doParallel
包并尝试运行loop
并希望输出相同的结果(即保存P1[i]
) 。但是我收到了一个错误:
require(doParallel)
cl <- makeCluster(3)
registerDoParallel(cl)
m <- 10
P1 <- rep(NA, m)
Result <- foreach(i=icount(m),.combine=cbind) %dopar% {
lalonde <- lalonde[sample(1:nrow(lalonde)), ] # randomise the order
X <- cbind(lalonde$age, lalonde$educ, lalonde$black, lalonde$hisp,
lalonde$married, lalonde$nodegr, lalonde$u74, lalonde$u75,
lalonde$re75, lalonde$re74)
BalanceMat <- cbind(lalonde$age, lalonde$educ, lalonde$black,
lalonde$hisp, lalonde$married, lalonde$nodegr,
lalonde$u74, lalonde$u75, lalonde$re75, lalonde$re74,
I(lalonde$re74*lalonde$re75))
genout <- GenMatch(Tr=lalonde$treat, X=X, BalanceMatrix=BalanceMat, estimand="ATE",
pop.size=16, max.generations=10, wait.generations=1)
mout <- Match(Y=NULL, Tr=lalonde$treat, X=X,
Weight.matrix=genout,
replace=TRUE, ties=FALSE)
summary(mout)
treated <- lalonde[mout$index.treated, ]
treated$Pair_ID <- treated$ID
non.treated <- lalonde[mout$index.control, ]
non.treated$Pair_ID <- treated$ID
matched.data <- rbind(treated, non.treated)
matched.data <- matched.data[order(matched.data$Pair_ID), ]
P1[i] <- matched.data$ID[matched.data$Pair_ID == 1 & matched.data$treat == 0 ]
}
无法找到GenMatch
。有什么改进我的代码的建议吗?
答案 0 :(得分:1)
创建群集时,您将创建新的不可见R会话。所以你必须给你的集群提供非基本功能。尝试运行:
clusterEvalQ(cl,library(Matching))
clusterEvalQ(cl,library(rgenoud))