2015-06-22 09:21:52.844 INFO 6456 --- [Thread-40] org.apache.spark.storage.MemoryStore:ensureFreeSpace(13598)调用curMem = 45830,maxMem = 1017800294 2015-06-22 09:21:52.845 INFO 6456 --- [Thread-40] org.apache.spark.storage.MemoryStore:阻塞输入-0-1434945112600作为字节存储在内存中(估计大小为13.3 KB,免费970.6 MB ) 2015-06-22 09:21:52.847 INFO 6456 --- [lt-dispatcher-2] o.apache.spark.storage.BlockManagerInfo:在localhost:50335的内存中添加了输入-0-1434945112600(大小:13.3 KB,免费:970.6 MB) 2015-06-22 09:21:52.852 WARN 6456 --- [Thread-40] org.apache.spark.storage.BlockManager:阻止输入-0-1434945112600仅复制到0个对等体而不是1个对等体 2015-06-22 09:21:52.862 INFO 6456 --- [Thread-40] o.a.s.streaming.receiver.BlockGenerator:推送块输入-0-1434945112600 ...
以下是我的RDD定义
final JavaReceiverInputDStream<Status> receiverStream = TwitterUtils
.createStream(streamingSC);
final JavaDStream<String> statuses = receiverStream
.map(new TwitterStatusStream());
final JavaDStream<String> lines = statuses
.flatMap(new TwitterLineFunction());
final JavaDStream<String> words = lines
.flatMap(new TwitterWordFunction());
final JavaDStream<String> hashTags = words
.filter(new TwitterHashTagFunction());
// statuses.print();
hashTags.print();
streamingSC.start();
streamingSC.awaitTermination();
在下面的功能中,我打印的记录器没有在控制台中显示..
public class TwitterStatusStream implements Function<Status, String>,
Serializable {
public static final Logger logger = Logger.getLogger(TwitterStatusStream.class);
private static final long serialVersionUID = -6529156421224365069L;
@Override
public String call(Status status) {
String str = status.getText();
logger.info(str);
return str;
}
}
任何帮助将不胜感激...... Java Spark上下文创建和Java流上下文创建
public JavaSparkContext javaSparkContext() {
return new JavaSparkContext(getSparkConf());
}
@Bean
public JavaStreamingContext javaStreamingContext() {
return new JavaStreamingContext(javaSparkContext(),
Durations.seconds(2000));
}
private SparkConf getSparkConf() {
SparkConf conf = new SparkConf();
conf.setAppName("TwitterSpark");
conf.setMaster(master);
conf.set("spark.executor.memory", "512m");
conf.set("spark.cores.max", "3");
conf.set("spark.default.parallelism", "1");
return conf;
}