我有一个文本文件,我想分成列向量:
dtstamp ozone ozone_8hr_avg
06/18/2015 14:00:00 0.071 0.059
06/18/2015 13:00:00 0.071 0.053
如何以下列格式生成输出?
dtstamp = [06/18/2015 14:00:00, 06/18/2015]
ozone = [0.071, 0.071]
etc.
答案 0 :(得分:1)
import datetime
dtstamp = [] # initialize the dtstamp list
ozone = [] # initialize the ozone list
with open('file.txt', 'r') as f:
next(f) # skip the title line
for line in f: # iterate through the file
if not line: continue # skip blank lines
day, time, value, _ = line.split() # split up the line
dtstamp.append(datetime.datetime.strptime(' '.join((date, time)),
'%m/%d/%Y %H:%M:%S') # add a date
ozone.append(float(value)) # add a value
然后,您可以将这些list
与zip
合并,以使用相应的日期/值:
for date, value in zip(dtstamp, ozone):
print(date, value) # just an example
答案 1 :(得分:1)
其他答案很少似乎在运行它们时出错。
试试这个,它应该像魅力一样!
dtstmp = []
ozone = []
ozone_8hr_avg = []
with open('file.txt', 'r') as file:
next(file)
for line in file:
if (line=="\n") or (not line): #If a blank line occurs
continue
words = line.split() #Extract the words
dtstmp.append(' '.join(words[0::1]))#join the date
ozone.append(words[2]) #Add ozone
ozone_8hr_avg.append(words[3]) #Add the third entry
print "dtstmp =", dtstmp
print "ozone =", ozone
print "ozone_8hr_avg =", ozone_8hr_avg
答案 2 :(得分:0)
我会查看pandas http://pandas.pydata.org或csv模块。使用cvs,你必须自己制作列,因为它会为你提供行。
rows = [row for row in csv.reader(file, delimiter='\t') ] #get the rows
col0 = [ row[0] for row in rows ] # construct a colonm from element 0 of each row.
答案 3 :(得分:0)
试试我的朋友:
# -*- coding: utf8 -*-
file = open("./file.txt")
lines = file.readlines()
data = []
data_hour = []
ozone = []
ozone_8hr_avg = []
for i_line in lines:
data.append(i_line.split()[0:2])
data_hour.append(' '.join(data[-1]))
ozone.append(i_line.split()[2])
ozone_8hr_avg.append(i_line.split()[3])
#print (data)
print (data_hour)
print (ozone)
print (ozone_8hr_avg)
如果这有助于你记住接受答案。