我有一个数据框,目前看起来如下,有2628行和101列。我想将与years
等相关联的0.08333 0.16666 0.249999
行转换为列:
years Currency 0.08333333 0.16666666 0.24999999 0.33333332 \
2005-01-04 GBP 4.709456 4.633861 4.586271 4.567017
2005-01-05 GBP 4.713099 4.649220 4.606802 4.588313
2005-01-06 GBP 4.707237 4.646861 4.609294 4.593076
代码如下,其中combined_data
是数据帧。我使用melt
执行此操作但得到错误KeyError: 'years'
并且不知道如何处理此问题:
from pandas.io.excel import read_excel
import pandas as pd
import numpy as np
url = 'http://www.bankofengland.co.uk/statistics/Documents/yieldcurve/uknom05_mdaily.xls'
# check the sheet number, spot: 9/9, short end 7/9
spot_curve = read_excel(url, sheetname=8)
short_end_spot_curve = read_excel(url, sheetname=6)
# do some cleaning, keep NaN for now, as forward fill NaN is not recommended for yield curve
spot_curve.columns = spot_curve.loc['years:']
spot_curve.columns.name = 'years'
valid_index = spot_curve.index[4:]
spot_curve = spot_curve.loc[valid_index]
# remove all maturities within 5 years as those are duplicated in short-end file
col_mask = spot_curve.columns.values > 5
spot_curve = spot_curve.iloc[:, col_mask]
short_end_spot_curve.columns = short_end_spot_curve.loc['years:']
short_end_spot_curve.columns.name = 'years'
valid_index = short_end_spot_curve.index[4:]
short_end_spot_curve = short_end_spot_curve.loc[valid_index]
# merge these two, time index are identical
# ==============================================
combined_data = pd.concat([short_end_spot_curve, spot_curve], axis=1, join='outer')
# sort the maturity from short end to long end
combined_data.sort_index(axis=1, inplace=True)
def filter_func(group):
return group.isnull().sum(axis=1) <= 50
combined_data = combined_data.groupby(level=0).filter(filter_func)
idx = 0
values = ['GBP'] * len(combined_data.index)
combined_data.insert(idx, 'Currency', values)
print combined_data
pd.melt(combined_data,id_vars=['years']) #ERROR!
修改:所需结果:
years Currency
0.08333333 2005-01-04 GBP 4.709456 4.633861 4.586271 4.567017
0.16666666 2005-01-05 GBP 4.713099 4.649220 4.606802 4.588313
0.24999999 2005-01-06 GBP 4.707237 4.646861 4.609294 4.593076
答案 0 :(得分:1)
这可能需要根据您相对于列的行数进行调整,但会为您提供所需的结果(或多或少):
years Currency 0.08333333 0.16666666 0.24999999 0.33333332
0 2005-01-04 GBP 4.709456 4.633861 4.586271 4.567017
1 2005-01-05 GBP 4.713099 4.649220 4.606802 4.588313
2 2005-01-06 GBP 4.707237 4.646861 4.609294 4.593076
df['x'] = df.columns.values[-4:-1]
df = df.set_index('x',drop=True)
df.columns = ['years','Currency','v1','v2','v3','v4']
years Currency v1 v2 v3 v4
x
0.08333333 2005-01-04 GBP 4.709456 4.633861 4.586271 4.567017
0.16666666 2005-01-05 GBP 4.713099 4.649220 4.606802 4.588313
0.24999999 2005-01-06 GBP 4.707237 4.646861 4.609294 4.593076