使用pandas数据框的rpy2回归的最小示例

时间:2015-06-18 17:44:34

标签: r pandas rpy2

使用pandas数据帧进行线性回归的推荐方法是什么(如果有的话)?我可以做到,但我的方法似乎非常精细。我做的事情是不必要的复杂吗?

R代码,用于比较:

x <- c(1,2,3,4,5)
y <- c(2,1,3,5,4)
M <- lm(y~x)
summary(M)$coefficients
            Estimate Std. Error  t value  Pr(>|t|)
(Intercept)      0.6  1.1489125 0.522233 0.6376181
x                0.8  0.3464102 2.309401 0.1040880

现在,我的python(2.7.10),rpy2(2.6.0)和pandas(0.16.1)  版本:

import pandas
import pandas.rpy.common as common
from rpy2 import robjects
from rpy2.robjects.packages import importr

base = importr('base')
stats = importr('stats')

dataframe = pandas.DataFrame({'x': [1,2,3,4,5], 
                              'y': [2,1,3,5,4]})

robjects.globalenv['dataframe']\
   = common.convert_to_r_dataframe(dataframe) 

M = stats.lm('y~x', data=base.as_symbol('dataframe'))

print(base.summary(M).rx2('coefficients'))

            Estimate Std. Error  t value  Pr(>|t|)
(Intercept)      0.6  1.1489125 0.522233 0.6376181
x                0.8  0.3464102 2.309401 0.1040880

顺便说一下,我确实在导入pandas.rpy.common时获得了FutureWarning。但是,当我尝试pandas2ri.py2ri(dataframe)将数据帧从pandas转换为R(如上所述here)时,我得到了

NotImplementedError: Conversion 'py2ri' not defined for objects of type '<class 'pandas.core.series.Series'>'

3 个答案:

答案 0 :(得分:23)

调用pandas2ri.activate()后,会自动从Pandas对象到R对象进行一些转换。例如,您可以使用

M = R.lm('y~x', data=df)

而不是

robjects.globalenv['dataframe'] = dataframe
M = stats.lm('y~x', data=base.as_symbol('dataframe'))
import pandas as pd
from rpy2 import robjects as ro
from rpy2.robjects import pandas2ri
pandas2ri.activate()
R = ro.r

df = pd.DataFrame({'x': [1,2,3,4,5], 
                   'y': [2,1,3,5,4]})

M = R.lm('y~x', data=df)
print(R.summary(M).rx2('coefficients'))

产量

            Estimate Std. Error  t value  Pr(>|t|)
(Intercept)      0.6  1.1489125 0.522233 0.6376181
x                0.8  0.3464102 2.309401 0.1040880

答案 1 :(得分:13)

R和Python并不完全相同,因为您在Python / rpy2中构建数据框,而在R中使用向量(没有数据框)。

否则,使用rpy2的转换付款似乎在此处运行:

from rpy2.robjects import pandas2ri
pandas2ri.activate()
robjects.globalenv['dataframe'] = dataframe
M = stats.lm('y~x', data=base.as_symbol('dataframe'))

结果:

>>> print(base.summary(M).rx2('coefficients'))
            Estimate Std. Error  t value  Pr(>|t|)
(Intercept)      0.6  1.1489125 0.522233 0.6376181
x                0.8  0.3464102 2.309401 0.1040880

答案 2 :(得分:2)

我可以通过概述如何检索系数表的特定元素来添加unutbu's answer,其中包括 p - 值。

def r_matrix_to_data_frame(r_matrix):
    """Convert an R matrix into a Pandas DataFrame"""
    import pandas as pd
    from rpy2.robjects import pandas2ri
    array = pandas2ri.ri2py(r_matrix)
    return pd.DataFrame(array,
                        index=r_matrix.names[0],
                        columns=r_matrix.names[1])

# Let's start from unutbu's line retrieving the coefficients:
coeffs = R.summary(M).rx2('coefficients')
df = r_matrix_to_data_frame(coeffs)

这给我们留下了一个DataFrame,我们可以通过这种方式访问​​:

In [179]: df['Pr(>|t|)']
Out[179]:
(Intercept)    0.637618
x              0.104088
Name: Pr(>|t|), dtype: float64

In [181]: df.loc['x', 'Pr(>|t|)']
Out[181]: 0.10408803866182779