# first, create your data.frame
mydf <- data.frame(a = c(1,2,3), b = c(1,2,3), c = c(1,2,3))
# then, create your model.matrix
mym <- model.matrix(as.formula("~ a + b + c"), mydf)
# how can I normalize the model.matrix?
目前,我必须将我的model.matrix转换回data.frame才能运行我的规范化功能:
normalize <- function(x) { return ((x - min(x)) / (max(x) - min(x))) }
m.norm <- as.data.frame(lapply(m, normalize))
无论如何,通过简单地规范化model.matrix来避免这一步骤吗?
答案 0 :(得分:3)
您可以规范化每个列,而无需使用apply
函数转换为数据框:
apply(mym, 2, normalize)
# (Intercept) a b c
# 1 NaN 0.0 0.0 0.0
# 2 NaN 0.5 0.5 0.5
# 3 NaN 1.0 1.0 1.0
你可能实际上想要保持拦截不受影响,例如:
cbind(mym[,1,drop=FALSE], apply(mym[,-1], 2, normalize))
# (Intercept) a b c
# 1 1 0.0 0.0 0.0
# 2 1 0.5 0.5 0.5
# 3 1 1.0 1.0 1.0
答案 1 :(得分:3)
另一种选择是使用非常有用的matrixStats
包来对其进行矢量化(尽管TBH apply
在矩阵上和在列上应用时通常也非常有效)。这样您就可以保留原始数据结构
library(matrixStats)
Max <- colMaxs(mym[, -1])
Min <- colMins(mym[, -1])
mym[, -1] <- (mym[, -1] - Min)/(Max - Min)
mym
# (Intercept) a b c
# 1 1 0.0 0.0 0.0
# 2 1 0.5 0.5 0.5
# 3 1 1.0 1.0 1.0
# attr(,"assign")
# [1] 0 1 2 3
答案 2 :(得分:2)
如果你想在某种意义上“规范化”,你可以使用scale
函数,该函数将std.dev居中并设置为1。
> scale( mym )
(Intercept) a b c
1 NaN -1 -1 -1
2 NaN 0 0 0
3 NaN 1 1 1
attr(,"assign")
[1] 0 1 2 3
attr(,"scaled:center")
(Intercept) a b c
1 2 2 2
attr(,"scaled:scale")
(Intercept) a b c
0 1 1 1
> mym
(Intercept) a b c
1 1 1 1 1
2 1 2 2 2
3 1 3 3 3
attr(,"assign")
[1] 0 1 2 3
正如您所看到的,当“拦截”术语出现时,对所有模型矩阵进行“规范化”并没有多大意义。所以你可以这样做:
> mym[ , -1 ] <- scale( mym[,-1] )
> mym
(Intercept) a b c
1 1 -1 -1 -1
2 1 0 0 0
3 1 1 1 1
attr(,"assign")
[1] 0 1 2 3
实际上,如果您的默认对比选项设置为“contr.sum”并且列是因子类型,则会产生模型矩阵。如果要“标准化”的变量是因素,则仅作为内部到model.matrix
操作接受:
> mym <- model.matrix(as.formula("~ a + b + c"), mydf, contrasts.arg=list(a="contr.sum"))
Error in `contrasts<-`(`*tmp*`, value = contrasts.arg[[nn]]) :
contrasts apply only to factors
> mydf <- data.frame(a = factor(c(1,2,3)), b = c(1,2,3), c = c(1,2,3))
> mym <- model.matrix(as.formula("~ a + b + c"), mydf, contrasts.arg=list(a="contr.sum"))
> mym
(Intercept) a1 a2 b c
1 1 1 0 1 1
2 1 0 1 2 2
3 1 -1 -1 3 3
attr(,"assign")
[1] 0 1 1 2 3
attr(,"contrasts")
attr(,"contrasts")$a
[1] "contr.sum"