我有一个看起来像这样的DataFrame。我想在date_time
字段的那一天进行操作。
root
|-- host: string (nullable = true)
|-- user_id: string (nullable = true)
|-- date_time: timestamp (nullable = true)
我尝试添加一列来提取日期。到目前为止,我的尝试都失败了。
df = df.withColumn("day", df.date_time.getField("day"))
org.apache.spark.sql.AnalysisException: GetField is not valid on fields of type TimestampType;
这也失败了
df = df.withColumn("day", df.select("date_time").map(lambda row: row.date_time.day))
AttributeError: 'PipelinedRDD' object has no attribute 'alias'
知道如何做到这一点?
答案 0 :(得分:33)
您可以使用简单的map
:
df.rdd.map(lambda row:
Row(row.__fields__ + ["day"])(row + (row.date_time.day, ))
)
另一种选择是注册一个函数并运行SQL查询:
sqlContext.registerFunction("day", lambda x: x.day)
sqlContext.registerDataFrameAsTable(df, "df")
sqlContext.sql("SELECT *, day(date_time) as day FROM df")
最后你可以像这样定义udf:
from pyspark.sql.functions import udf
from pyspark.sql.types import IntegerType
day = udf(lambda date_time: date_time.day, IntegerType())
df.withColumn("day", day(df.date_time))
修改强>:
实际上如果使用原始SQL day
函数已经定义(至少在Spark 1.4中),那么你可以省略udf注册。它还提供了许多不同的日期处理功能,包括:
from_unixtime
和格式化程序,如date_format
也可以使用简单的日期表达式,如:
current_timestamp() - expr("INTERVAL 1 HOUR")
这意味着您可以构建相对复杂的查询而无需将数据传递给Python。例如:
df = sc.parallelize([
(1, "2016-01-06 00:04:21"),
(2, "2016-05-01 12:20:00"),
(3, "2016-08-06 00:04:21")
]).toDF(["id", "ts_"])
now = lit("2016-06-01 00:00:00").cast("timestamp")
five_months_ago = now - expr("INTERVAL 5 MONTHS")
(df
# Cast string to timestamp
# For Spark 1.5 use cast("double").cast("timestamp")
.withColumn("ts", unix_timestamp("ts_").cast("timestamp"))
# Find all events in the last five months
.where(col("ts").between(five_months_ago, now))
# Find first Sunday after the event
.withColumn("next_sunday", next_day(col("ts"), "Sun"))
# Compute difference in days
.withColumn("diff", datediff(col("ts"), col("next_sunday"))))