我有一个形状tavgk > 0
的数组,我想在最后一个维度中找到长度为8的唯一子数组的出现次数。
我知道(128, 36, 8)
和np.unique
,但这些似乎是元素而不是子数组。我见过this question,但它是关于找到特定子阵列的第一次出现,而不是所有唯一子阵列的计数。
答案 0 :(得分:3)
问题表明输入数组的形状为(128, 36, 8)
,我们有兴趣在最后一个维度中找到长度为8
的唯一子数组。
所以,我假设唯一性是将前两个维度合并在一起。我们假设A
为输入3D数组。
获取唯一子阵列的数量
# Reshape the 3D array to a 2D array merging the first two dimensions
Ar = A.reshape(-1,A.shape[2])
# Perform lex sort and get the sorted indices and xy pairs
sorted_idx = np.lexsort(Ar.T)
sorted_Ar = Ar[sorted_idx,:]
# Get the count of rows that have at least one TRUE value
# indicating presence of unique subarray there
unq_out = np.any(np.diff(sorted_Ar,axis=0),1).sum()+1
示例运行 -
In [159]: A # A is (2,2,3)
Out[159]:
array([[[0, 0, 0],
[0, 0, 2]],
[[0, 0, 2],
[2, 0, 1]]])
In [160]: unq_out
Out[160]: 3
获取唯一子阵列的出现次数
# Reshape the 3D array to a 2D array merging the first two dimensions
Ar = A.reshape(-1,A.shape[2])
# Perform lex sort and get the sorted indices and xy pairs
sorted_idx = np.lexsort(Ar.T)
sorted_Ar = Ar[sorted_idx,:]
# Get IDs for each element based on their uniqueness
id = np.append([0],np.any(np.diff(sorted_Ar,axis=0),1).cumsum())
# Get counts for each ID as the final output
unq_count = np.bincount(id)
示例运行 -
In [64]: A
Out[64]:
array([[[0, 0, 2],
[1, 1, 1]],
[[1, 1, 1],
[1, 2, 0]]])
In [65]: unq_count
Out[65]: array([1, 2, 1], dtype=int64)
答案 1 :(得分:1)
在这里,我修改了@Divakar非常有用的答案,以返回唯一子数组的计数以及子数组本身,以便输出与void Main()
{
var csvlines = File.ReadAllLines(@"c:\smdr.csv");
var csvLinesData = csvlines.Skip(1).Select(l => l.Split(',').ToArray());
var csvData = csvLinesData.Where(l => (l[6] != "VM Channel" && l[6] != "Voice Mail")).ToArray();
var user = (from r in csvData
group r by new { prop1 = r[12], Time = ((DateTime)r[0]).TimeOfDay } into g
orderby g.Count()
select new User
{
CSRName=g.Key,
Incomming=(from r1 in g
where r1[3]=="I"
select r1).Count(),
outgoing = (from r1 in g
where r1[3] == "O"
select r1).Count()
}).ToList();
}
class User
{
public string CSRName;
public int outgoing;
public int Incomming;
}
的输出相同:
collections.Counter.most_common()
答案 2 :(得分:0)
我不确定这是最有效的方法,但这应该有效。
arr = arr.reshape(128*36,8)
unique_ = []
occurence_ = []
for sub in arr:
if sub.tolist() not in unique_:
unique_.append(sub.tolist())
occurence_.append(1)
else:
occurence_[unique_.index(sub.tolist())]+=1
for index_,u in unique_:
print u,"occurrence: %s"%occurence_[index_]