我不理解super关键字在子类中没有使用时的含义。
这个问题来自这个我在git hub项目中找到的课程(链接是https://github.com/statsmodels/statsmodels/pull/2374/files)
查看代码fit
出现的res = super(PenalizedMixin, self).fit(method=method, **kwds)
+
方法的示例
"""
+Created on Sun May 10 08:23:48 2015
+
+Author: Josef Perktold
+License: BSD-3
+"""
+
+import numpy as np
+from ._penalties import SCADSmoothed
+
+class PenalizedMixin(object):
+ """Mixin class for Maximum Penalized Likelihood
+
+
+ TODO: missing **kwds or explicit keywords
+
+ TODO: do we really need `pen_weight` keyword in likelihood methods?
+
+ """
+
+ def __init__(self, *args, **kwds):
+ super(PenalizedMixin, self).__init__(*args, **kwds)
+
+ penal = kwds.pop('penal', None)
+ # I keep the following instead of adding default in pop for future changes
+ if penal is None:
+ # TODO: switch to unpenalized by default
+ self.penal = SCADSmoothed(0.1, c0=0.0001)
+ else:
+ self.penal = penal
+
+ # TODO: define pen_weight as average pen_weight? i.e. per observation
+ # I would have prefered len(self.endog) * kwds.get('pen_weight', 1)
+ # or use pen_weight_factor in signature
+ self.pen_weight = kwds.get('pen_weight', len(self.endog))
+
+ self._init_keys.extend(['penal', 'pen_weight'])
+
+
+
+ def loglike(self, params, pen_weight=None):
+ if pen_weight is None:
+ pen_weight = self.pen_weight
+
+ llf = super(PenalizedMixin, self).loglike(params)
+ if pen_weight != 0:
+ llf -= pen_weight * self.penal.func(params)
+
+ return llf
+
+
+ def loglikeobs(self, params, pen_weight=None):
+ if pen_weight is None:
+ pen_weight = self.pen_weight
+
+ llf = super(PenalizedMixin, self).loglikeobs(params)
+ nobs_llf = float(llf.shape[0])
+
+ if pen_weight != 0:
+ llf -= pen_weight / nobs_llf * self.penal.func(params)
+
+ return llf
+
+
+ def score(self, params, pen_weight=None):
+ if pen_weight is None:
+ pen_weight = self.pen_weight
+
+ sc = super(PenalizedMixin, self).score(params)
+ if pen_weight != 0:
+ sc -= pen_weight * self.penal.grad(params)
+
+ return sc
+
+
+ def scoreobs(self, params, pen_weight=None):
+ if pen_weight is None:
+ pen_weight = self.pen_weight
+
+ sc = super(PenalizedMixin, self).scoreobs(params)
+ nobs_sc = float(sc.shape[0])
+ if pen_weight != 0:
+ sc -= pen_weight / nobs_sc * self.penal.grad(params)
+
+ return sc
+
+
+ def hessian_(self, params, pen_weight=None):
+ if pen_weight is None:
+ pen_weight = self.pen_weight
+ loglike = self.loglike
+ else:
+ loglike = lambda p: self.loglike(p, pen_weight=pen_weight)
+
+ from statsmodels.tools.numdiff import approx_hess
+ return approx_hess(params, loglike)
+
+
+ def hessian(self, params, pen_weight=None):
+ if pen_weight is None:
+ pen_weight = self.pen_weight
+
+ hess = super(PenalizedMixin, self).hessian(params)
+ if pen_weight != 0:
+ h = self.penal.deriv2(params)
+ if h.ndim == 1:
+ hess -= np.diag(pen_weight * h)
+ else:
+ hess -= pen_weight * h
+
+ return hess
+
+
+ def fit(self, method=None, trim=None, **kwds):
+ # If method is None, then we choose a default method ourselves
+
+ # TODO: temporary hack, need extra fit kwds
+ # we need to rule out fit methods in a model that will not work with
+ # penalization
+ if hasattr(self, 'family'): # assume this identifies GLM
+ kwds.update({'max_start_irls' : 0})
+
+ # currently we use `bfgs` by default
+ if method is None:
+ method = 'bfgs'
+
+ if trim is None:
+ trim = False # see below infinite recursion in `fit_constrained
+
+ res = super(PenalizedMixin, self).fit(method=method, **kwds)
+
+ if trim is False:
+ # note boolean check for "is False" not evaluates to False
+ return res
+ else:
+ # TODO: make it penal function dependent
+ # temporary standin, only works for Poisson and GLM,
+ # and is computationally inefficient
+ drop_index = np.nonzero(np.abs(res.params) < 1e-4) [0]
+ keep_index = np.nonzero(np.abs(res.params) > 1e-4) [0]
+ rmat = np.eye(len(res.params))[drop_index]
+
+ # calling fit_constrained raise
+ # "RuntimeError: maximum recursion depth exceeded in __instancecheck__"
+ # fit_constrained is calling fit, recursive endless loop
+ if drop_index.any():
+ # todo : trim kwyword doesn't work, why not?
+ #res_aux = self.fit_constrained(rmat, trim=False)
+ res_aux = self._fit_zeros(keep_index, **kwds)
+ return res_aux
+ else:
+ return res
+
+
我尝试使用更简单的示例重现此代码,但它不起作用:
class A(object):
def __init__(self):
return
def funz(self, x):
print(x)
def funz2(self, x):
llf = super(A, self).funz2(x)
print(x + 1)
a = A()
a.funz(3)
a.funz2(4)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/home/donbeo/Desktop/prova.py", line 15, in <module>
a.funz2(4)
File "/home/donbeo/Desktop/prova.py", line 10, in funz2
llf = super(A, self).funz2(x)
AttributeError: 'super' object has no attribute 'funz2'
>>>
答案 0 :(得分:3)
PenalizedMixin 是一个子类:它是super
的孩子。
然而,顾名思义,它意味着混合。也就是说,它旨在用作多继承场景中的一个父节点。 __init__
调用方法解析顺序中的下一个类,该顺序不一定是该类的父级。
无论如何,我不明白你的“更简单”的例子。原始代码工作的原因是超类确实有object
方法。 funz2
没有<div class="container">
<div class="popup">Popup 1</div>
<div class="popup r">Popup 2</div>
<div class="popup b">Popup 3</div>
<div class="popup g">Popup 4</div>
<div class="popup y">Popup 5</div>
</div>
方法。
答案 1 :(得分:3)
您应该始终使用super
,因为否则类可能会在多重继承方案中错过,特别(在使用混合类时这是不可避免的)。例如:
class BaseClass(object):
def __init__(self):
print 'BaseClass.__init__'
class MixInClass(object):
def __init__(self):
print 'MixInClass.__init__'
class ChildClass(BaseClass, MixInClass):
def __init__(self):
print 'ChildClass.__init__'
super(ChildClass, self).__init__() # -> BaseClass.__init__
if __name__ == '__main__':
child = ChildClass()
给出:
ChildClass.__init__
BaseClass.__init__
错过了MixInClass.__init__
,而:
class BaseClass(object):
def __init__(self):
print 'BaseClass.__init__'
super(BaseClass, self).__init__() # -> MixInClass.__init__
class MixInClass(object):
def __init__(self):
print 'MixInClass.__init__'
super(MixInClass, self).__init__() # -> object.__init__
class ChildClass(BaseClass, MixInClass):
def __init__(self):
print 'ChildClass.__init__'
super(ChildClass, self).__init__() # -> BaseClass.__init__
if __name__ == '__main__':
child = ChildClass()
给出:
ChildClass.__init__
BaseClass.__init__
MixInClass.__init__
ChildClass.__mro__
,&#34;方法解析顺序&#34; 在两种情况下均相同:
(<class '__main__.ChildClass'>, <class '__main__.BaseClass'>, <class '__main__.MixInClass'>, <type 'object'>)
BaseClass
和MixInClass
都只从object
继承(即他们是&#34; new-style&#34; 类),但你仍然需要使用super
来确保调用MRO中类的方法的任何其他实现。要启用此用法,object.__init__
已实施,但实际上并没有多大帮助!