从阅读开始,然后在StackOverflow上尝试一些与R中读取XML文件相关的先前示例,似乎由于以下文件的“锯齿状”性质,我无法使用与XPath相关的方法。
https://www.dropbox.com/s/jz8sj2fifuobkva/Data.xml?oref=e&n=305307914
因此,似乎我需要使用xmlToList()和ldply()的组合来从以下文件中读取数据。
具体来说,对于文件中的所有20个事件(即event.1,event.2,... event.20),我想获得以下变量(结构化为)
$movements$movement$clips$clip$data$event$begin
(矢量)$movements$movement$clips$clip$data$event$end
(矢量)$movements$movement$clips$clip$data$event$max$cells
(数据框)$rollover$data$quant$cells
,其中事件中有多个样本(n个数据帧)基于其他StackOverflow示例代码(使用R v3.1.2)我试图读取“开始”数据如下: -
library(XML)
library(plyr)
datfile <- "D:/Data.xml"
xmlfile <- xmlTreeParse(datfile,useInternal = TRUE)
sampledata <- xmlToList(xmlfile)
startdata <- ldply(sampledata$movements$movement$clips$clip$data$event$begin)
当我这样做时,我只得到event.1中的第一个变量(0.240)。我现在已经到了被困的地步,并且已经用尽了我对如何做到这一点的调查。
答案 0 :(得分:3)
如果您愿意提供xml2
,那么您可以通过以下几行访问begin
:
library(xml2)
library(magrittr)
# get a vector
doc <- read_xml("~/Dropbox/Data.xml")
doc %>%
xml_find_all("//d1:event/d1:begin", ns=xml_ns(doc)) %>%
xml_text() %>%
as.numeric()
## [1] 0.24 0.73 1.25 1.75 2.24 2.75 3.27 3.76 4.30 4.77 5.28 5.78 6.32 6.82
## [15] 7.34 7.85 8.37 8.86 9.39 9.89
# get data frames
library(stringr)
make_df <- function(txt) {
txt %>%
str_split("\n") %>% extract2(1) %>%
str_trim() %>%
textConnection() -> con
dat <- read.table(con)
close(con)
dat
}
doc %>%
xml_find_all("//d1:max/d1:cells", ns=xml_ns(doc)) %>%
xml_text() %>%
lapply(make_df) -> df_list
df_list[[1]]
## V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12
## 1 0.0 0.0 1.5 3.5 3.0 1.5 0.0 0.0 0.0 0.0 0.0 0
## 2 0.0 1.0 5.5 8.5 7.0 3.5 2.0 2.0 1.0 0.0 0.0 0
## 3 0.0 3.0 9.0 13.0 9.0 4.0 3.0 3.5 2.5 1.0 0.0 0
## 4 0.0 4.5 11.0 14.0 9.0 4.0 3.0 4.0 4.0 2.0 0.0 0
## 5 0.0 4.0 10.5 12.0 7.5 4.0 3.0 4.0 4.5 3.0 0.0 0
## 6 0.0 4.5 8.5 10.0 8.0 7.5 6.5 4.5 4.0 2.5 0.0 0
## 7 2.0 8.0 14.5 16.0 14.0 13.5 13.0 9.5 5.5 2.5 0.0 0
## 8 3.5 12.0 20.0 20.5 18.0 18.0 18.0 14.5 9.0 4.0 1.5 0
## 9 4.5 12.5 20.5 21.0 18.0 18.0 18.5 16.0 11.5 6.5 2.5 0
## 10 4.5 12.0 19.0 20.0 17.5 17.5 18.0 16.5 12.5 7.5 3.5 0
## 11 3.5 9.5 15.5 16.5 15.0 14.5 14.5 14.0 11.5 8.0 4.0 1
## 12 2.0 6.5 10.0 12.0 11.0 11.0 12.0 12.0 10.5 7.5 4.0 0
## 13 1.5 4.5 6.5 7.0 7.0 7.0 8.0 9.0 8.0 6.5 3.5 0
## 14 1.0 4.0 5.5 5.5 5.5 5.5 6.0 6.0 6.0 4.5 2.5 0
## 15 1.5 4.5 6.0 5.5 5.5 5.5 5.5 5.5 5.5 4.0 2.0 0
## 16 2.0 5.0 7.0 7.0 6.0 6.0 6.0 6.0 5.5 4.0 1.5 0
## 17 2.5 5.5 7.5 7.5 7.0 7.0 6.5 6.5 5.5 4.0 1.5 0
## 18 2.0 5.5 7.0 7.5 7.5 7.5 7.5 6.5 5.5 3.5 0.0 0
## 19 2.5 5.5 7.5 8.0 7.5 8.0 7.5 6.5 5.0 2.5 0.0 0
## 20 2.0 5.0 6.5 7.5 7.5 8.0 7.5 6.5 4.5 2.0 0.0 0
## 21 1.5 4.0 6.0 7.5 8.5 8.5 8.0 6.0 3.5 1.0 0.0 0
## 22 1.0 3.5 6.5 8.5 9.5 9.5 8.0 5.5 3.0 0.0 0.0 0
## 23 0.0 4.0 8.0 11.0 12.5 11.0 8.5 5.5 2.5 0.0 0.0 0
## 24 0.0 4.5 9.5 13.5 14.5 12.0 8.5 5.5 2.0 0.0 0.0 0
## 25 0.0 5.5 13.0 17.5 17.0 14.5 9.5 5.5 1.5 0.0 0.0 0
## 26 0.0 6.5 16.0 21.0 19.5 15.5 10.0 5.0 1.0 0.0 0.0 0
## 27 0.0 7.0 17.0 22.5 21.0 16.0 10.0 5.0 0.0 0.0 0.0 0
## 28 0.0 7.0 17.5 22.5 20.5 15.5 9.0 3.5 0.0 0.0 0.0 0
## 29 0.0 5.5 14.5 20.5 18.5 14.0 8.0 2.5 0.0 0.0 0.0 0
## 30 0.0 3.5 10.0 14.5 14.0 10.0 5.0 1.0 0.0 0.0 0.0 0
## 31 0.0 1.5 5.5 8.5 8.0 5.5 2.5 0.0 0.0 0.0 0.0 0
## 32 0.0 0.0 0.0 2.5 2.5 0.0 0.0 0.0 0.0 0.0 0.0 0
length(df_list)
## [1] 20
# get the deeply nested ones
quant_cells <- function(node) {
node %>%
xml_find_all("./d1:data/d1:quant/d1:cells", ns=xml_ns(doc)) %>%
xml_text() %>%
lapply(make_df)
}
doc %>%
xml_find_all("//d1:rollover", ns=xml_ns(doc)) %>%
as_list() %>%
lapply(quant_cells) -> quant_df_list
length(quant_df_list)
## [1] 20
length(quant_df_list[[1]])
## [1] 63
quant_df_list[[1]]
## [[1]]
## V1 V2 V3 V4 V5 V6
## 1 0.0 0.0 0.0 0.0 0.0 0
## 2 0.0 0.0 0.2 0.0 0.0 0
## 3 0.0 0.5 1.7 0.5 0.0 0
## 4 0.5 2.7 3.4 2.3 0.3 0
## 5 2.3 4.3 4.4 3.0 0.4 0
## 6 3.2 4.8 4.8 3.3 0.4 0
## 7 2.2 4.1 3.8 2.3 0.3 0
## 8 0.3 1.4 1.4 0.4 0.0 0
##
## [[2]]
## V1 V2 V3 V4 V5 V6 V7 V8 V9
## 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
## 2 0.0 0.3 0.9 1.3 1.1 0.4 0.0 0.0 0
## 3 0.2 2.2 4.5 5.9 4.7 2.0 0.2 0.0 0
## 4 1.0 5.3 8.5 9.1 7.1 3.7 0.4 0.0 0
## 5 2.9 8.3 12.0 11.6 9.0 5.4 1.0 0.0 0
## 6 3.5 9.2 13.5 12.9 9.6 5.8 1.5 0.1 0
## 7 3.0 8.2 11.6 11.3 8.3 4.4 0.5 0.0 0
## 8 1.1 3.7 6.4 6.3 4.0 1.8 0.2 0.0 0
## 9 0.0 0.2 1.4 1.5 0.3 0.0 0.0 0.0 0
## ...
## (down to [[63]])
答案 1 :(得分:2)
我将使用rvest
包解决此问题:
urlpath_parse<-html("https://www.dropbox.com/s/jz8sj2fifuobkva/Data.xml?oref=e&n=305307914")
data_begin<-urlpath_parse%>%
html_nodes("begin")%>% #if you use only html_node, it will give only 0.240
html_text()
[1] "0.240" "0.240" "0.730" "0.730" "1.250" "1.250" "1.750" "1.750" "2.240" "2.240" "2.750" "2.750" "3.270" "3.270" "3.760" "3.760" "4.300"
[18] "4.300" "4.770" "4.770" "5.280" "5.280" "5.780" "5.780" "6.320" "6.320" "6.820" "6.820" "7.340" "7.340" "7.850" "7.850" "8.370" "8.370"
[35] "8.860" "8.860" "9.390" "9.390" "9.890" "9.890"
data_end<-urlpath_parse%>%
html_nodes("end")%>% #if you use only html_node, it will give only 0.240
html_text()
> data_end
[1] "0.870" "1.380" "1.890" "2.370" "2.880" "3.400" "3.890" "4.420" "4.910" "5.410" "5.900" "6.440" "6.950" "7.460" "7.980"
[16] "8.490" "9.000" "9.520" "10.010" "10.500"