为什么Hyper-Q选择性地重叠我的cc5.2硬件上的异步HtoD和DtoH传输?

时间:2015-06-14 17:35:27

标签: cuda

old Parallel ForAll blog post演示使用流和异步memcpys在内核和memcpys之间以及HtoD和DtoH memcpys之间生成重叠。所以我运行了GTX Titan X上给出的完整Async示例,结果如下:

正如您所看到的,当HtoD,Kernel和DtoH在单个循环中背靠背调用时,HtoD和DtoH传输之间没有任何重叠。但是,当它们在三个循环中分别调用时,HtoD和DtoH之间存在重叠。

如果Hyper-Q做了它声称做的事情,那么在第一个版本的循环启动中也应该有HtoD和DtoH重叠(就像特斯拉K20c的情况一样)。我的理解是,在具有支持Hyper-Q的3.5及以上计算能力的设备中,用户不必担心再次定制启动顺序。

我还运行了CUDA 7.0 simpleHyperQ示例。将CUDA_DEVICE_MAX_CONNECTIONS设置为32,我可以运行32个并发内核,因此在这种情况下Hyper-Q正在工作。

我使用的是64位Windows 8.1,驱动程序版本353.06和CUDA 7.0,使用Visual Studio 2013进行编译,目标是x64平台发布模式,代码生成属性为compute_52,sm_52CUDA_DEVICE_MAX_CONNECTIONS设置为充足的32。

由于我无法发布更多链接,因此Async示例的完整代码(略有修改)发布在下面。

// Copyright 2012 NVIDIA Corporation

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at

//     http://www.apache.org/licenses/LICENSE-2.0

// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <cuda_runtime.h>
#include <device_launch_parameters.h>
#include <curand_kernel.h>

#include <stdio.h>

// Convenience function for checking CUDA runtime API results
// can be wrapped around any runtime API call. No-op in release builds.
inline
cudaError_t checkCuda(cudaError_t result)
{
#if defined(DEBUG) || defined(_DEBUG)
    if (result != cudaSuccess) {
        fprintf(stderr, "CUDA Runtime Error: %s\n", cudaGetErrorString(result));
        assert(result == cudaSuccess);
    }
#endif
    return result;
}

__global__ void kernel(float *a, int offset)
{
    int i = offset + threadIdx.x + blockIdx.x*blockDim.x;
    float x = (float)i;
    float s = sinf(x);
    float c = cosf(x);
    a[i] = a[i] + sqrtf(s*s + c*c);
}

float maxError(float *a, int n)
{
    float maxE = 0;
    for (int i = 0; i < n; i++) {
        float error = fabs(a[i] - 1.0f);
        if (error > maxE) maxE = error;
    }
    return maxE;
}

int main(int argc, char **argv)
{
    _putenv_s("CUDA_DEVICE_MAX_CONNECTIONS", "32");

    const int blockSize = 256, nStreams = 4;
    const int n = 4 * 1024 * blockSize * nStreams;
    const int streamSize = n / nStreams;
    const int streamBytes = streamSize * sizeof(float);
    const int bytes = n * sizeof(float);

    int devId = 0;
    if (argc > 1) devId = atoi(argv[1]);

    cudaDeviceProp prop;
    checkCuda(cudaGetDeviceProperties(&prop, devId));
    printf("Device : %s\n", prop.name);
    checkCuda(cudaSetDevice(devId));

    // allocate pinned host memory and device memory
    float *a, *d_a;
    checkCuda(cudaMallocHost((void**)&a, bytes));      // host pinned
    checkCuda(cudaMalloc((void**)&d_a, bytes)); // device

    float ms; // elapsed time in milliseconds

    // create events and streams
    cudaEvent_t startEvent, stopEvent, dummyEvent;
    cudaStream_t stream[nStreams];
    checkCuda(cudaEventCreate(&startEvent));
    checkCuda(cudaEventCreate(&stopEvent));
    checkCuda(cudaEventCreate(&dummyEvent));
    for (int i = 0; i < nStreams; ++i)
        checkCuda(cudaStreamCreate(&stream[i]));

    // baseline case - sequential transfer and execute
    memset(a, 0, bytes);
    checkCuda(cudaEventRecord(startEvent, 0));
    checkCuda(cudaMemcpy(d_a, a, bytes, cudaMemcpyHostToDevice));
    kernel << <n / blockSize, blockSize >> >(d_a, 0);
    checkCuda(cudaMemcpy(a, d_a, bytes, cudaMemcpyDeviceToHost));
    checkCuda(cudaEventRecord(stopEvent, 0));
    checkCuda(cudaEventSynchronize(stopEvent));
    checkCuda(cudaEventElapsedTime(&ms, startEvent, stopEvent));
    printf("Time for sequential transfer and execute (ms): %f\n", ms);
    printf("  max error: %e\n", maxError(a, n));

    // asynchronous version 1: loop over {copy, kernel, copy}
    memset(a, 0, bytes);
    checkCuda(cudaEventRecord(startEvent, 0));
    for (int i = 0; i < nStreams; ++i) {
        int offset = i * streamSize;
        checkCuda(cudaMemcpyAsync(&d_a[offset], &a[offset],
            streamBytes, cudaMemcpyHostToDevice,
            stream[i]));
        kernel << <streamSize / blockSize, blockSize, 0, stream[i] >> >(d_a, offset);
        checkCuda(cudaMemcpyAsync(&a[offset], &d_a[offset],
            streamBytes, cudaMemcpyDeviceToHost,
            stream[i]));
    }
    checkCuda(cudaEventRecord(stopEvent, 0));
    checkCuda(cudaEventSynchronize(stopEvent));
    checkCuda(cudaEventElapsedTime(&ms, startEvent, stopEvent));
    printf("Time for asynchronous V1 transfer and execute (ms): %f\n", ms);
    printf("  max error: %e\n", maxError(a, n));

    // asynchronous version 2: 
    // loop over copy, loop over kernel, loop over copy
    memset(a, 0, bytes);
    checkCuda(cudaEventRecord(startEvent, 0));
    for (int i = 0; i < nStreams; ++i)
    {
        int offset = i * streamSize;
        checkCuda(cudaMemcpyAsync(&d_a[offset], &a[offset],
            streamBytes, cudaMemcpyHostToDevice,
            stream[i]));
    }
    for (int i = 0; i < nStreams; ++i)
    {
        int offset = i * streamSize;
        kernel << <streamSize / blockSize, blockSize, 0, stream[i] >> >(d_a, offset);
    }
    for (int i = 0; i < nStreams; ++i)
    {
        int offset = i * streamSize;
        checkCuda(cudaMemcpyAsync(&a[offset], &d_a[offset],
            streamBytes, cudaMemcpyDeviceToHost,
            stream[i]));
    }
    checkCuda(cudaEventRecord(stopEvent, 0));
    checkCuda(cudaEventSynchronize(stopEvent));
    checkCuda(cudaEventElapsedTime(&ms, startEvent, stopEvent));
    printf("Time for asynchronous V2 transfer and execute (ms): %f\n", ms);
    printf("  max error: %e\n", maxError(a, n));

    // cleanup
    checkCuda(cudaEventDestroy(startEvent));
    checkCuda(cudaEventDestroy(stopEvent));
    checkCuda(cudaEventDestroy(dummyEvent));
    for (int i = 0; i < nStreams; ++i)
        checkCuda(cudaStreamDestroy(stream[i]));
    cudaFree(d_a);
    cudaFreeHost(a);

    cudaDeviceReset();

    return 0;
}

1 个答案:

答案 0 :(得分:0)

您所观察到的可能是在Windows WDDM平台上运行代码的工件。 WDDM子系统具有很多延迟,其他平台不会受到阻碍,因此为了提高整体性能,CUDA WDDM驱动程序执行命令批处理。这可能会干扰并发操作和命令重叠的预期排序或时间,这可能就是你在这里看到的。

解决方案是使用Windows TCC驱动程序,它需要支持的Telsa或Quadro卡,或者更改为非WDDM平台,如Linux。在这种情况下,后者似乎已经解决了这个问题。