有old Parallel ForAll blog post演示使用流和异步memcpys在内核和memcpys之间以及HtoD和DtoH memcpys之间生成重叠。所以我运行了GTX Titan X上给出的完整Async示例,结果如下:
正如您所看到的,当HtoD,Kernel和DtoH在单个循环中背靠背调用时,HtoD和DtoH传输之间没有任何重叠。但是,当它们在三个循环中分别调用时,HtoD和DtoH之间存在重叠。
如果Hyper-Q做了它声称做的事情,那么在第一个版本的循环启动中也应该有HtoD和DtoH重叠(就像特斯拉K20c的情况一样)。我的理解是,在具有支持Hyper-Q的3.5及以上计算能力的设备中,用户不必担心再次定制启动顺序。
我还运行了CUDA 7.0 simpleHyperQ
示例。将CUDA_DEVICE_MAX_CONNECTIONS
设置为32,我可以运行32个并发内核,因此在这种情况下Hyper-Q正在工作。
我使用的是64位Windows 8.1,驱动程序版本353.06和CUDA 7.0,使用Visual Studio 2013进行编译,目标是x64平台发布模式,代码生成属性为compute_52,sm_52
。 CUDA_DEVICE_MAX_CONNECTIONS
设置为充足的32。
由于我无法发布更多链接,因此Async示例的完整代码(略有修改)发布在下面。
// Copyright 2012 NVIDIA Corporation
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <cuda_runtime.h>
#include <device_launch_parameters.h>
#include <curand_kernel.h>
#include <stdio.h>
// Convenience function for checking CUDA runtime API results
// can be wrapped around any runtime API call. No-op in release builds.
inline
cudaError_t checkCuda(cudaError_t result)
{
#if defined(DEBUG) || defined(_DEBUG)
if (result != cudaSuccess) {
fprintf(stderr, "CUDA Runtime Error: %s\n", cudaGetErrorString(result));
assert(result == cudaSuccess);
}
#endif
return result;
}
__global__ void kernel(float *a, int offset)
{
int i = offset + threadIdx.x + blockIdx.x*blockDim.x;
float x = (float)i;
float s = sinf(x);
float c = cosf(x);
a[i] = a[i] + sqrtf(s*s + c*c);
}
float maxError(float *a, int n)
{
float maxE = 0;
for (int i = 0; i < n; i++) {
float error = fabs(a[i] - 1.0f);
if (error > maxE) maxE = error;
}
return maxE;
}
int main(int argc, char **argv)
{
_putenv_s("CUDA_DEVICE_MAX_CONNECTIONS", "32");
const int blockSize = 256, nStreams = 4;
const int n = 4 * 1024 * blockSize * nStreams;
const int streamSize = n / nStreams;
const int streamBytes = streamSize * sizeof(float);
const int bytes = n * sizeof(float);
int devId = 0;
if (argc > 1) devId = atoi(argv[1]);
cudaDeviceProp prop;
checkCuda(cudaGetDeviceProperties(&prop, devId));
printf("Device : %s\n", prop.name);
checkCuda(cudaSetDevice(devId));
// allocate pinned host memory and device memory
float *a, *d_a;
checkCuda(cudaMallocHost((void**)&a, bytes)); // host pinned
checkCuda(cudaMalloc((void**)&d_a, bytes)); // device
float ms; // elapsed time in milliseconds
// create events and streams
cudaEvent_t startEvent, stopEvent, dummyEvent;
cudaStream_t stream[nStreams];
checkCuda(cudaEventCreate(&startEvent));
checkCuda(cudaEventCreate(&stopEvent));
checkCuda(cudaEventCreate(&dummyEvent));
for (int i = 0; i < nStreams; ++i)
checkCuda(cudaStreamCreate(&stream[i]));
// baseline case - sequential transfer and execute
memset(a, 0, bytes);
checkCuda(cudaEventRecord(startEvent, 0));
checkCuda(cudaMemcpy(d_a, a, bytes, cudaMemcpyHostToDevice));
kernel << <n / blockSize, blockSize >> >(d_a, 0);
checkCuda(cudaMemcpy(a, d_a, bytes, cudaMemcpyDeviceToHost));
checkCuda(cudaEventRecord(stopEvent, 0));
checkCuda(cudaEventSynchronize(stopEvent));
checkCuda(cudaEventElapsedTime(&ms, startEvent, stopEvent));
printf("Time for sequential transfer and execute (ms): %f\n", ms);
printf(" max error: %e\n", maxError(a, n));
// asynchronous version 1: loop over {copy, kernel, copy}
memset(a, 0, bytes);
checkCuda(cudaEventRecord(startEvent, 0));
for (int i = 0; i < nStreams; ++i) {
int offset = i * streamSize;
checkCuda(cudaMemcpyAsync(&d_a[offset], &a[offset],
streamBytes, cudaMemcpyHostToDevice,
stream[i]));
kernel << <streamSize / blockSize, blockSize, 0, stream[i] >> >(d_a, offset);
checkCuda(cudaMemcpyAsync(&a[offset], &d_a[offset],
streamBytes, cudaMemcpyDeviceToHost,
stream[i]));
}
checkCuda(cudaEventRecord(stopEvent, 0));
checkCuda(cudaEventSynchronize(stopEvent));
checkCuda(cudaEventElapsedTime(&ms, startEvent, stopEvent));
printf("Time for asynchronous V1 transfer and execute (ms): %f\n", ms);
printf(" max error: %e\n", maxError(a, n));
// asynchronous version 2:
// loop over copy, loop over kernel, loop over copy
memset(a, 0, bytes);
checkCuda(cudaEventRecord(startEvent, 0));
for (int i = 0; i < nStreams; ++i)
{
int offset = i * streamSize;
checkCuda(cudaMemcpyAsync(&d_a[offset], &a[offset],
streamBytes, cudaMemcpyHostToDevice,
stream[i]));
}
for (int i = 0; i < nStreams; ++i)
{
int offset = i * streamSize;
kernel << <streamSize / blockSize, blockSize, 0, stream[i] >> >(d_a, offset);
}
for (int i = 0; i < nStreams; ++i)
{
int offset = i * streamSize;
checkCuda(cudaMemcpyAsync(&a[offset], &d_a[offset],
streamBytes, cudaMemcpyDeviceToHost,
stream[i]));
}
checkCuda(cudaEventRecord(stopEvent, 0));
checkCuda(cudaEventSynchronize(stopEvent));
checkCuda(cudaEventElapsedTime(&ms, startEvent, stopEvent));
printf("Time for asynchronous V2 transfer and execute (ms): %f\n", ms);
printf(" max error: %e\n", maxError(a, n));
// cleanup
checkCuda(cudaEventDestroy(startEvent));
checkCuda(cudaEventDestroy(stopEvent));
checkCuda(cudaEventDestroy(dummyEvent));
for (int i = 0; i < nStreams; ++i)
checkCuda(cudaStreamDestroy(stream[i]));
cudaFree(d_a);
cudaFreeHost(a);
cudaDeviceReset();
return 0;
}
答案 0 :(得分:0)
您所观察到的可能是在Windows WDDM平台上运行代码的工件。 WDDM子系统具有很多延迟,其他平台不会受到阻碍,因此为了提高整体性能,CUDA WDDM驱动程序执行命令批处理。这可能会干扰并发操作和命令重叠的预期排序或时间,这可能就是你在这里看到的。
解决方案是使用Windows TCC驱动程序,它需要支持的Telsa或Quadro卡,或者更改为非WDDM平台,如Linux。在这种情况下,后者似乎已经解决了这个问题。