我有一个选项定价模型(非常简单的Black Scholes),它可以很好地处理数据:
Black Sholes Function
def BS2(S,X,T,r,v):
d1 = (log(S/X)+(.001+v*v/2)*T)/(v*sqrt(T))
d2 = d1-v*sqrt(T)
return (S*CND(d1)-X*exp(-.001*T)*CND(d2))
功能在这里:
Cumulative normal distribution function
def CND(X):
(a1,a2,a3,a4,a5) = (0.31938153, -0.356563782, 1.781477937,
-1.821255978, 1.330274429)
L = abs(X)
K = 1.0 / (1.0 + 0.2316419 * L)
w = 1.0 - 1.0 / sqrt(2*pi)*exp(-L*L/2.) * (a1*K + a2*K*K + a3*pow(K,3) +
a4*pow(K,4) + a5*pow(K,5))
if X<0:
w = 1.0-w
return w
我认为这个问题不重要,但BS2称之为:
def BS(df):
d1 = (log(S/X)+(.001+v*v/2)*T)/(v*sqrt(T))
d2 = d1-v*sqrt(T)
return pd.Series((S*CND(d1)-X*exp(-.001*T)*CND(d2)))
我试图修改工作BS功能以接受来自df的数据,但似乎做错了什么:
In [13]:
df
Out[13]:
S X T r v
0 100 100 1 0.001 0.3
1 50 50 1 0.001 0.3
我的数据很直接:
In [14]:
df.dtypes
Out[14]:
S float64
X float64
T float64
r float64
v float64
dtype: object
并且都是float64
S=df['S']
X=df['X']
T=df['T']
r=df['r']
v=df['v']
我也尝试在发送给BS2之前将df变量分配给一个名称(我这样做了,没有这个分配:
In [18]:
BS(df)
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-18-745e7dd0eb2c> in <module>()
----> 1 BS(df)
<ipython-input-17-b666a39cd530> in BS(df)
3 def BS(df):
4 CallPutFlag='c'
----> 5 d1 = (log(S/X)+(.001+v*v/2)*T)/(v*sqrt(T))
6 d2 = d1-v*sqrt(T)
7 cp = ((S*CND(d1)-X*exp(-.001*T)*CND(d2)))
C:\Users\camcompco\AppData\Roaming\Python\Python34\site- packages\pandas\core\series.py in wrapper(self)
74 return converter(self.iloc[0])
75 raise TypeError(
---> 76 "cannot convert the series to {0}".format(str(converter)))
77 return wrapper
78
TypeError: cannot convert the series to <class 'float'>
冒着发送太多信息的风险,以下是错误消息:
php -a
非常感谢任何协助。
约翰
答案 0 :(得分:1)
我认为使用dataframe.apply()
会更容易http://pandas.pydata.org/pandas-docs/dev/generated/pandas.DataFrame.apply.html
然后语法将 EDIT
ld: warning: directory not found for option '-
L/Users/welch/Downloads/Flurry'
ld: warning: directory not found for option '-LiPhone'
ld: warning: directory not found for option '-LSDK'
ld: warning: directory not found for option '-LviPhone'
ld: warning: directory not found for option '-L6.4.0'
ld: warning: directory not found for option '-L(1)/Flurry-iOS-6.4.0/Flurry'
ld: warning: directory not found for option '-L(1)/Flurry-iOS-6.4.0/FlurryAds'
ld: warning: directory not found for option '-F(1)'
ld: warning: directory not found for option '-F/Users/welch/Downloads/IOS-InApp'
ld: warning: directory not found for option '-FSDK-InApp-2.4.2'
ld: library not found for -lFlurryAds_6.4.0
clang: error: linker command failed with exit code 1 (use -v to see invocation)
ld: warning: directory not found for option '-L/Users/welch/Downloads/Flurry'
ld: warning: directory not found for option '-LiPhone'
ld: warning: directory not found for option '-LSDK'
ld: warning: directory not found for option '-LviPhone'
ld: warning: directory not found for option '-L6.4.0'
ld: warning: directory not found for option '-L(1)/Flurry-iOS-6.4.0/Flurry'
ld: warning: directory not found for option '-L(1)/Flurry-iOS-6.4.0/FlurryAds'
ld: warning: directory not found for option '-F(1)'
ld: warning: directory not found for option '-F/Users/welch/Downloads/IOS-InApp'
ld: warning: directory not found for option '-FSDK-InApp-2.4.2'
ld: library not found for -lFlurryAds_6.4.0
clang: error: linker command failed with exit code 1 (use -v to see invocation)
将函数func应用于每一行。
这个问题的答案是相似的:
Apply function to each row of pandas dataframe to create two new columns
答案 1 :(得分:0)
@ JonD的答案很好,但如果数据帧有多行,这里的替代答案会更快:
gcc -o p_rec.exe C:\path_to_portaudio\portaudio\common\pa_ringbuffer.c \
paex_record_file.c -lportaudio \
-IC:\path_to_portaudio\portaudio\src\common
的变化:
ifdef
,#ifdef _WIN32
#include <windows.h>
#include <process.h>
#endif
和#include <windows.h>
#include <process.h>
的numpy版本。否则你不必改变太多,因为numpy / pandas以元素方式支持基本的数学运算。from scipy.stats import norm
def BS2(df):
d1 = (np.log(df.S/df.X)+(.001+df.v*df.v/2)*df['T'])/(df.v*np.sqrt(df['T']))
d2 = d1-df.v*np.sqrt(df['T'])
return (df.S*norm.cdf(d1)-df.X*np.exp(-.001*df['T'])*norm.cdf(d2))
。更快的内置函数b / c几乎总是尽可能快。sqrt
和其他人的快捷符号,但log
需要写出来,因为exp
将被解释为norm.cdf
。我想这是一个很好的例子,为什么你应该避免使用快捷符号,但我很懒...