我有使用Coq的经验,现在我正在学习Agda。我正在研究插入排序的正确性证明,并且已经达到了我想要执行类似于Coq的重写策略的点。目前,我有:
open import Data.Nat
open import Relation.Binary.PropositionalEquality
open import Data.Sum
data list : Set where
nil : list
cons : ℕ -> list -> list
data sorted (n : ℕ) : list -> Set where
nilSorted : sorted n nil
consSorted : ∀ hd tl -> hd ≥ n -> sorted hd tl -> sorted n (cons hd tl)
leMin : ∀ x y -> x ≤ y -> (x ⊓ y) ≡ x
leMin zero zero p = refl
leMin zero (suc y) p = refl
leMin (suc x) zero ()
leMin (suc x) (suc y) (s≤s p) = cong suc (leMin x y p)
insert : ℕ → list → list
insert x l = {!!}
intDec : ∀ x y → x ≤ y ⊎ x > y
intDec x y = {!!}
insertCorrect : ∀ {n} -> ∀ x l -> sorted n l -> sorted (n ⊓ x) (insert x l)
insertCorrect {n} x nil p with intDec n x
insertCorrect {n} x nil p | inj₁ x₁ with (leMin n x x₁)
... | c = {c }0
我的证明背景如下:
Goal: sorted (n ⊓ x) (cons x nil)
————————————————————————————————————————————————————————————
p : sorted n nil
c : n ⊓ x ≡ n
x₁ : n ≤ x
x : ℕ
n : ℕ
我尝试分解c
,希望用(n ⊓ x)
替换n
的出现次数,但是,我收到以下错误:
I'm not sure if there should be a case for the constructor refl,
because I get stuck when trying to solve the following unification
problems (inferred index ≟ expected index):
n₁ ⊓ x₂ ≟ n₁
when checking that the expression ? has type
sorted (n ⊓ x) (cons x nil)
基本上,我希望能够执行重写,以便我可以达到以下几点:
Goal: sorted n (cons x nil)
————————————————————————————————————————————————————————————
p : sorted n nil
x₁ : n ≤ x
x : ℕ
n : ℕ
关于如何进行的任何想法?
答案 0 :(得分:3)
您可以使用Agda关键字rewrite
对目标应用命题等效:
insertCorrect : ∀ {n} -> ∀ x l -> sorted n l -> sorted (n ⊓ x) (insert x l)
insertCorrect {n} x nil p with intDec n x
insertCorrect {n} x nil p | inj₁ x₁ rewrite leMin n x x₁ = ?
此处,?
中的目标是,正如您所希望的那样:
Goal: sorted n (cons x nil)
————————————————————————————————————————————————————————————
p : sorted n nil
x₁ : n ≤ x
x : ℕ
n : ℕ