我有一个排序的数字列表,我需要让它返回数字出现的索引范围。我的名单是:
daysSick = [0, 0, 0, 0, 1, 2, 3, 3, 3, 4, 5, 5, 5, 6, 6, 11, 15, 24]
如果我搜索0,我需要返回(0,3)。现在我只能找到一个数字的位置!我知道如何进行二进制搜索,但是我被困在如何让它从位置上下移动以找到其他相同的值!
low = 0
high = len(daysSick) - 1
while low <= high :
mid = (low + high) // 2
if value < daysSick[mid]:
high = mid - 1
elif value > list[mid]:
low = mid + 1
else:
return mid
答案 0 :(得分:4)
为什么不使用python's bisection routines:
>>> daysSick = [0, 0, 0, 0, 1, 2, 3, 3, 3, 4, 5, 5, 5, 6, 6, 11, 15, 24]
>>> from bisect import bisect_left, bisect_right
>>> bisect_left(daysSick, 3)
6
>>> bisect_right(daysSick, 3)
9
>>> daysSick[6:9]
[3, 3, 3]
答案 1 :(得分:3)
我提供的解决方案比bisect
库中的raw functions taken更快
使用优化二进制搜索
def search(a, x):
right = 0
h = len(a)
while right < h:
m = (right+h)//2
if x < a[m]: h = m
else:
right = m+1
# start binary search for left element only
# including elements from 0 to right-1 - much faster!
left = 0
h = right - 1
while left < h:
m = (left+h)//2
if x > a[m]: left = m+1
else:
h = m
return left, right-1
search(daysSick, 5)
(10, 12)
search(daysSick, 2)
(5, 5)
Bisect
使用自定义二进制搜索...
%timeit search(daysSick, 3)
1000000 loops, best of 3: 1.23 µs per loop
将源代码从bisect
复制到python ...
%timeit bisect_left(daysSick, 1), bisect_right(daysSick, 1)
1000000 loops, best of 3: 1.77 µs per loop
使用默认导入是最快的,因为我认为它可能会在幕后进行优化......
from bisect import bisect_left, bisect_right
%timeit bisect_left(daysSick, 1), bisect_right(daysSick, 1)
1000000 loops, best of 3: 504 ns per loop
没有分机。库但不是二进制搜索
daysSick = [0, 0, 0, 0, 1, 2, 3, 3, 3, 4, 5, 5, 5, 6, 6, 11, 15, 24]
# using a function
idxL = lambda val, lst: [i for i,d in enumerate(lst) if d==val]
allVals = idxL(0,daysSick)
(0, 3)
答案 2 :(得分:2)
好的,这是另一种方法,通过尝试在已经减少的范围的一半上执行bisect_left
和bisect_right
之前先缩小范围。我编写此代码是因为我认为稍微比调用bisect_left
和bisect_right
更有效率,即使它具有相同的时间复杂度。
def binary_range_search(s, x):
# First we will reduce the low..high range if possible
# by using symmetric binary search to find an index pointing to x
low, high = 0, len(s)
while True:
if low >= high:
return None
mid = (low + high) // 2
mid_element = s[mid]
if x == mid_element:
break
elif x < mid_element:
high = mid
else:
low = mid + 1
xindex = mid
# Now we have found an index pointing to x called xindex
# and potentially reduced the low..high range
# now we can run bisect_left on low..xindex + 1
lo, hi = low, xindex + 1
while lo < hi:
mid = (lo+hi)//2
if x > s[mid]: lo = mid+1
else: hi = mid
first = lo
# and also bisect_right on xindex..high
lo, hi = xindex, high
while lo < hi:
mid = (lo+hi)//2
if x < s[mid]: hi = mid
else: lo = mid+1
last = lo - 1
return first, last
我认为时间复杂度是O(log n),就像琐碎的解决方案一样,但我相信无论如何这都会更有效率。我认为值得注意的是,您可以为大型数据集并行化bisect_left
和bisect_right
的第二部分,因为它们是不相互作用的独立操作。