我想知道是否有一种很好的方法可以使用基于for循环的范围和/或标准库中的算法迭代容器中的大多数N个元素(这就是重点,我知道我可以使用具有条件的“旧”for循环)。
基本上,我正在寻找与此Python代码相对应的内容:
for i in arr[:N]:
print(i)
答案 0 :(得分:36)
因为我个人会使用this或this回答(两者都是+1),只是为了增加你的知识 - 你可以使用增强适配器。对于您的情况 - sliced似乎是最合适的:
#include <boost/range/adaptor/sliced.hpp>
#include <vector>
#include <iostream>
int main(int argc, const char* argv[])
{
std::vector<int> input={1,2,3,4,5,6,7,8,9};
const int N = 4;
using boost::adaptors::sliced;
for (auto&& e: input | sliced(0, N))
std::cout << e << std::endl;
}
一个重要注意事项:sliced
要求N不大于distance(range)
- 所以更安全(和更慢)的版本如下:
for (auto&& e: input | sliced(0, std::min(N, input.size())))
所以 - 再次 - 我会使用更简单,旧的C / C ++方法(这是你想避免的问题;)
答案 1 :(得分:13)
这是最便宜的保存解决方案,适用于我能提出的所有前向迭代器:
auto begin = std::begin(range);
auto end = std::end(range);
if (std::distance(begin, end) > N)
end = std::next(begin,N);
这可能会在整个范围内运行几乎两次,但我认为没有其他方法可以获得范围的长度。
答案 2 :(得分:8)
您可以使用好的旧break
在需要时手动断开循环。它甚至可以用于基于范围的循环。
#include <vector>
#include <iostream>
int main() {
std::vector<int> a{2, 3, 4, 5, 6};
int cnt = 0;
int n = 3;
for (int x: a) {
if (cnt++ >= n) break;
std::cout << x << std::endl;
}
}
答案 3 :(得分:7)
C ++很棒,因为您可以编写自己的 hideous 解决方案并将它们隐藏在抽象层下
#include <vector>
#include <iostream>
//~-~-~-~-~-~-~- abstraction begins here ~-~-~-~-~-//
struct range {
range(std::vector<int>& cnt) : m_container(cnt),
m_end(cnt.end()) {}
range& till(int N) {
if (N >= m_container.size())
m_end = m_container.end();
else
m_end = m_container.begin() + N;
return *this;
}
std::vector<int>& m_container;
std::vector<int>::iterator m_end;
std::vector<int>::iterator begin() {
return m_container.begin();
}
std::vector<int>::iterator end() {
return m_end;
}
};
//~-~-~-~-~-~-~- abstraction ends here ~-~-~-~-~-//
int main() {
std::vector<int> a{11, 22, 33, 44, 55};
int n = 4;
range subRange(a);
for ( int i : subRange.till(n) ) {
std::cout << i << std::endl; // prints 11, then 22, then 33, then 44
}
}
上面的代码显然缺少一些错误检查和其他调整,但我想清楚地表达这个想法。
这是有效的,因为range-based for loops生成的代码类似于以下
{
auto && __range = range_expression ;
for (auto __begin = begin_expr,
__end = end_expr;
__begin != __end; ++__begin) {
range_declaration = *__begin;
loop_statement
}
}
(CFR)。 begin_expr
和end_expr
答案 4 :(得分:5)
如果您的容器没有(或可能没有)RandomAccessIterator,那么还有一种方法可以为这只猫设置皮肤:
# GetThisValue
soup.find('td').find_all('br')[1].next_sibling
# Current
soup.find('td').find('font').b.text
至少对我而言,这是非常可读的:-)。无论容器类型如何,它都具有O(N)复杂度。
答案 5 :(得分:5)
这是一个索引迭代器。大部分是样板,留下来,因为我很懒。
template<class T>
struct indexT
//: std::iterator< /* ... */ > // or do your own typedefs, or don't bother
{
T t = {};
indexT()=default;
indexT(T tin):t(tin){}
indexT& operator++(){ ++t; return *this; }
indexT operator++(int){ auto tmp = *this; ++t; return tmp; }
T operator*()const{return t;}
bool operator==( indexT const& o )const{ return t==o.t; }
bool operator!=( indexT const& o )const{ return t!=o.t; }
// etc if you want full functionality.
// The above is enough for a `for(:)` range-loop
};
它包装标量类型T
,并在*
上返回一个副本。它也适用于迭代器,有趣,这在这里很有用,因为它可以让我们从指针有效地继承:
template<class ItA, class ItB>
struct indexing_iterator:indexT<ItA> {
ItB b;
// TODO: add the typedefs required for an iterator here
// that are going to be different than indexT<ItA>, like value_type
// and reference etc. (for simple use, not needed)
indexing_iterator(ItA a, ItB bin):ItA(a), b(bin) {}
indexT<ItA>& a() { return *this; }
indexT<ItA> const& a() const { return *this; }
decltype(auto) operator*() {
return b[**a()];
}
decltype(auto) operator->() {
return std::addressof(b[**a()]);
}
};
索引迭代器包装两个迭代器,第二个迭代器必须是随机访问。它使用第一个迭代器来获取索引,它用于从第二个迭代器中查找值。
接下来,我们有一个范围类型。 SFINAE改进版可以在许多地方找到。它使得在for(:)
循环中迭代一系列迭代器变得容易:
template<class Iterator>
struct range {
Iterator b = {};
Iterator e = {};
Iterator begin() { return b; }
Iterator end() { return e; }
range(Iterator s, Iterator f):b(s),e(f) {}
range(Iterator s, size_t n):b(s), e(s+n) {}
range()=default;
decltype(auto) operator[](size_t N) { return b[N]; }
decltype(auto) operator[] (size_t N) const { return b[N]; }\
decltype(auto) front() { return *b; }
decltype(auto) back() { return *std::prev(e); }
bool empty() const { return begin()==end(); }
size_t size() const { return end()-begin(); }
};
以下是使用indexT
范围轻松的帮助:
template<class T>
using indexT_range = range<indexT<T>>;
using index = indexT<size_t>;
using index_range = range<index>;
template<class C>
size_t size(C&&c){return c.size();}
template<class T, std::size_t N>
size_t size(T(&)[N]){return N;}
index_range indexes( size_t start, size_t finish ) {
return {index{start},index{finish}};
}
template<class C>
index_range indexes( C&& c ) {
return make_indexes( 0, size(c) );
}
index_range intersect( index_range lhs, index_range rhs ) {
if (lhs.b.t > rhs.e.t || rhs.b.t > lhs.b.t) return {};
return {index{(std::max)(lhs.b.t, rhs.b.t)}, index{(std::min)(lhs.e.t, rhs.e.t)}};
}
好的,几乎就在那里。
index_filter_it
获取一系列索引和一个随机访问迭代器,并将一系列索引迭代器放入该随机访问迭代器的数据中:
template<class R, class It>
auto index_filter_it( R&& r, It it ) {
using std::begin; using std::end;
using ItA = decltype( begin(r) );
using R = range<indexing_iterator<ItA, It>>;
return R{{begin(r),it}, {end(r),it}};
}
index_filter
获取index_range
和随机访问容器,与其索引相交,然后调用index_filter_it
:
template<class C>
auto index_filter( index_range r, C& c ) {
r = intersect( r, indexes(c) );
using std::begin;
return index_filter_it( r, begin(c) );
}
现在我们有:
for (auto&& i : index_filter( indexes(0,6), arr )) {
}
和中提琴,我们有一个大型乐器。
可以使用Fancier过滤器。
size_t filter[] = {1,3,0,18,22,2,4};
using std::begin;
for (auto&& i : index_filter_it( filter, begin(arr) ) )
将访问arr
中的1,3,0,18,22,2,4。但是,它不会进行边界检查,除非arr.begin()[]
边界检查。
上述代码中可能存在错误,您应该只使用boost
。
如果您在-
上实施[]
和indexT
,您甚至可以菊花链式连接这些范围。
答案 6 :(得分:2)
此解决方案未超过end()
,O(N)
的复杂度std::list
(不使用std::distance
)适用于std::for_each
,且仅需要ForwardIterator
:
std::vector<int> vect = {1,2,3,4,5,6,7,8};
auto stop_iter = vect.begin();
const size_t stop_count = 5;
if(stop_count <= vect.size())
{
std::advance(stop_iter, n)
}
else
{
stop_iter = vect.end();
}
std::for_each(vect.vegin(), stop_iter, [](auto val){ /* do stuff */ });
唯一不做的是使用InputIterator
等std::istream_iterator
- 你必须使用外部计数器。
答案 7 :(得分:2)
首先,我们编写一个在给定索引处停止的迭代器:
template<class I>
class at_most_iterator
: public boost::iterator_facade<at_most_iterator<I>,
typename I::value_type,
boost::forward_traversal_tag>
{
private:
I it_;
int index_;
public:
at_most_iterator(I it, int index) : it_(it), index_(index) {}
at_most_iterator() {}
private:
friend class boost::iterator_core_access;
void increment()
{
++it_;
++index_;
}
bool equal(at_most_iterator const& other) const
{
return this->index_ == other.index_ || this->it_ == other.it_;
}
typename std::iterator_traits<I>::reference dereference() const
{
return *it_;
}
};
我们现在可以编写一个算法,用于从给定范围中获取此迭代器的愤怒:
template<class X>
boost::iterator_range<
at_most_iterator<typename X::iterator>>
at_most(int i, X& xs)
{
typedef typename X::iterator iterator;
return std::make_pair(
at_most_iterator<iterator>(xs.begin(), 0),
at_most_iterator<iterator>(xs.end(), i)
);
}
用法:
int main(int argc, char** argv)
{
std::vector<int> xs = {1, 2, 3, 4, 5, 6, 7, 8, 9};
for(int x : at_most(5, xs))
std::cout << x << "\n";
return 0;
}
答案 8 :(得分:2)
由于 C++20,您可以将范围适配器 std::views::take
从 Ranges library 添加到您的 range-based for loop。通过这种方式,您可以实现与 PiotrNycz's answer 中的解决方案类似的解决方案,但无需使用 Boost:
int main() {
std::vector<int> v {1, 2, 3, 4, 5, 6, 7, 8, 9};
const int N = 4;
for (int i : v | std::views::take(N))
std::cout << i << std::endl;
return 0;
}
这个解决方案的好处是 N
可能大于向量的大小。这意味着,对于上面的例子,使用 N = 13
是安全的;然后将打印完整的向量。