我正在尝试使用名为' epi'的新变量创建一个df。 (代表插曲)...基于' days.since.last'变量。当' days.since.last'的价值大于90,我希望剧集变量增加1。
这是原始的df
deid session.number days.since.last
1 1 1 0
2 1 2 7
3 1 3 12
4 5 1 0
5 5 2 7
6 5 3 14
7 5 4 93
8 5 5 5
9 5 6 102
10 12 1 0
11 12 2 21
12 12 3 104
13 12 4 4
从
创建help <- data.frame(deid = c(1, 1, 1, 5, 5, 5, 5, 5, 5, 12, 12, 12, 12),
session.number = c(1, 2, 3, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4),
days.since.last = c(0, 7, 12, 0, 7, 14, 93, 5, 102, 0, 21, 104, 4))
这是我希望实现的输出
deid session.number days.since.last epi
1 1 1 0 1
2 1 2 7 1
3 1 3 12 1
4 5 1 0 1
5 5 2 7 1
6 5 3 14 1
7 5 4 93 2
8 5 5 5 2
9 5 6 102 3
10 12 1 0 1
11 12 2 21 1
12 12 3 104 2
13 12 4 4 2
我最好的尝试是以下代码,但是,它不会更改每个新剧集的第一个值(它们保持为0)...
help$epi <- as.numeric(0)
tmp <- gapply(help, form = ~ deid, FUN = function(x)
{
spanSeq <- rle(x$days.since.last <= 90)$lengths[rle(x$days.since.last <= 90)$values == TRUE]
x$epi[x$days.since.last <= 90] <- rep(seq_along(spanSeq), times = spanSeq)
rm(spanSeq)
x
})
help2 <- do.call("rbind", tmp)
rownames(help2)<-c(1:length(help2$deid))
非常感谢任何帮助!
答案 0 :(得分:3)
您可以使用dplyr
执行此操作:
library(dplyr)
help %>% group_by(deid) %>% mutate(epi = cumsum(ifelse(days.since.last>90,1,0))+1)
deid session.number days.since.last epi
1 1 1 0 1
2 1 2 7 1
3 1 3 12 1
4 5 1 0 1
5 5 2 7 1
6 5 3 14 1
7 5 4 93 2
8 5 5 5 2
9 5 6 102 3
10 12 1 0 1
11 12 2 21 1
12 12 3 104 2
13 12 4 4 2
基本上,group_by
按照群组为您的&#39; deid&#39;变量。我们为每个&#39; days.since.last&#39;分配1或0。然后我们创建一个新变量,它是这些1和0的累积和。通过添加一个,我们得到您想要的结果。