MapReduce程序

时间:2015-06-06 12:48:29

标签: java hadoop mapreduce

我正在编写一个mampreduce来查找特定时期from_date和To date的股票开盘价和收盘价的最大值,最小值。

    public class StockByDate extends Configured implements Tool {

    public static class Map extends Mapper<LongWritable, Text, Text, Text> {
    DateFormat df = new SimpleDateFormat("yyyy-MM-dd");
    public static Date fromdate;
    public static Date todate;
    {
        try {
            fromdate = df.parse("2000-01-01");
            todate = df.parse("2005-01-01");
        } catch (ParseException f) {
            f.printStackTrace();
        }

    }

    public void map(LongWritable key, Text value, Context context)
            throws IOException, InterruptedException {
        // Date, Open, High,Low, Close, Volume, Adj Close
        // 2010-10-18,40.66,41.74,40.44,41.49,10620000, 41.49

        try {
            String[] tokens = value.toString().split(",");

            String date = tokens[0].trim();

            // String open_close =
            // tokens[1].concat(",").concat(tokens[4].trim());

            String open_close = tokens[1] + ";" + tokens[4];

            Date givendate;

            givendate = df.parse(date);

            if (givendate.after(fromdate) && givendate.before(todate)) {

                context.write(new Text(date), new Text(open_close));
                System.out.println(open_close);

            }

        } catch (ParseException e) {

            e.printStackTrace();
        }




            }
        }

    public static class Reduce extends Reducer<Text, Text, Text, Text> {

    public static float maxopen = (float) 0;
    public static float minopen = Float.MAX_VALUE;
    public Text maxopenkey;
    public Text minopenkey;

    public static float maxclose = (float) 0;
    public static float minclose = Float.MAX_VALUE;
    public Text maxclosekey;
    public Text minclosekey;

    public void reduce(Text key, Iterable<Text> values, Context context)
            throws IOException, InterruptedException {

        boolean maxopenfound = false;

        boolean minopenfound = false;

        boolean maxclosefound = false;

        boolean minclosefound = false;

        for (Text val : values) {

            System.out.println(key.toString() + " " + val.toString());

            String[] temp_present = val.toString().split(";");
            System.out.println(key.toString() + " " + val.toString());
            float open_float = Float.valueOf(temp_present[0].trim());

            float close_float = Float.valueOf(temp_present[1].trim());

            if (open_float >= maxopen) {
                maxopen = open_float;
                maxopenkey = key;
                maxopenfound = true;
            }
            if (open_float <= minopen) {
                minopen = open_float;
                minopenkey = key;
                minopenfound = true;
            }

            /*
             * if(close_float >= maxclose){ maxclose = close_float;
             * maxclosekey=key; maxclosefound = true; } if(close_float <=
             * minclose){ minclose = close_float; minclosekey=key;
             * minclosefound = true; }
             */

            /*
             * if (it.hasNext()){
             * 
             * String[] temp_next = it.next().toString().split(","); float
             * open_float_next = Float.valueOf(temp_next[0].trim());
             * 
             * if(open_float <= open_float_next){ minopen = open_float;
             * minopenkey = key; minopenfound = true; }
             * 
             * }
             */

            // float presentOpenValue = Float.valueOf(temp[0]);

            // float presentMaxCloseValue = Float.parseFloat(temp[1]);


        }

        // con text.write(key, new Text(String.valueOf(maxopen)));

        if (maxopenfound) {
            Text newmax = new Text();
            newmax.set(String.valueOf(maxopen));
            context.write(maxopenkey, newmax);
        }

        if (minopenfound) {
            Text newmin = new Text();
            newmin.set(String.valueOf(minopen));
            context.write(minopenkey, newmin);
        }



            }
        }

        public int run(String[] args) throws Exception {
    Job job = Job.getInstance(getConf(), "StockByDate");
    job.setJarByClass(StockByDate.class);
    job.setJobName("StockByDate");
    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(Text.class);
    job.setMapperClass(Map.class);
    job.setCombinerClass(Reduce.class);
    job.setReducerClass(Reduce.class);
    job.setInputFormatClass(TextInputFormat.class);
    job.setOutputFormatClass(TextOutputFormat.class);
    FileInputFormat.setInputPaths(job, new Path(args[0]));
    FileOutputFormat.setOutputPath(job, new Path(args[1]));
    boolean success = job.waitForCompletion(true);
    return success ? 0 : 1;
        }

        public static void main(String[] args) throws Exception {
    int ret = ToolRunner.run(new StockByDate(), args);
    System.exit(ret);
        }

    }

以下是例外:

  

5/06/06 05:19:09 INFO Configuration.deprecation:mapred.skip.on是   弃用。相反,请使用mapreduce.job.skiprecords 2000-01-03   104.8751115 / 06/06 05:19:09 INFO mapred.LocalJobRunner:减少任务执行者完成。

     

2000-01-03 104.87511 15/06/06 05:19:09 WARN mapred.LocalJobRunner:   job_local790515175_0001 java.lang.Exception:   java.lang.ArrayIndexOutOfBoundsException:1 at   org.apache.hadoop.mapred.LocalJobRunner $ Job.runTasks(LocalJobRunner.java:462)     在   org.apache.hadoop.mapred.LocalJobRunner $ Job.run(LocalJobRunner.java:529)   引起:java.lang.ArrayIndexOutOfBoundsException:1 at   org.wordcompute.stock.StockByDate $ Reduce.reduce(StockByDate.java:117)     在   org.wordcompute.stock.StockByDate $ Reduce.reduce(StockByDate.java:1)     在org.apache.hadoop.mapreduce.Reducer.run(Reducer.java:171)at at   org.apache.hadoop.mapred.ReduceTask.runNewReducer(ReduceTask.java:627)     在org.apache.hadoop.mapred.ReduceTask.run(ReduceTask.java:389)at   org.apache.hadoop.mapred.LocalJobRunner $工作$ ReduceTaskRunnable.run(LocalJobRunner.java:319)     在   java.util.concurrent.Executors $ RunnableAdapter.call(Executors.java:471)     在java.util.concurrent.FutureTask.run(FutureTask.java:262)at   java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)     在   java.util.concurrent.ThreadPoolExecutor中的$ Worker.run(ThreadPoolExecutor.java:615)     at java.lang.Thread.run(Thread.java:745)15/06/06 05:19:10 INFO   mapreduce.Job:地图100%减少0%15/06/06 05:19:10信息   mapreduce.Job:作业job_local790515175_0001失败,状态为FAILED   由于:NA 15/06/06 05:19:10 INFO mapreduce.Job:计数器:33档   系统计数器FILE:读取的字节数= 550953 FILE:Number of   写入的字节数= 244837 FILE:读取操作数= 0 FILE:   大读操作数= 0 FILE:写操作数= 0     Map-Reduce Framework Map输入记录= 8692 Map输出   records = 1256 Map output bytes = 35609实现了地图输出   bytes = 1012输入拆分字节= 136组合输入记录= 1256         组合输出记录= 46减少输入组= 0减少随机播放   bytes = 1012减少输入记录= 0减少输出记录= 0         溢出记录= 46个混洗映射= 1个失败的随机数= 0合并   映射输出= 1经过的GC时间(ms)= 45 CPU花费的时间(ms)= 0         物理内存(字节)snapshot = 0虚拟内存(字节)   snapshot = 0已提交的总堆使用量(字节)= 165613568随机播放   错误BAD_ID = 0 CONNECTION = 0 IO_ERROR = 0 WRONG_LENGTH = 0         WRONG_MAP = 0 WRONG_REDUCE = 0文件输入格式计数字节   读= 550760文件输出格式计数字节写

10 = 0

1 个答案:

答案 0 :(得分:1)

你的代码会抛出一个ArrayIndexOutOfBoundsException,如堆栈跟踪第117行所示。

我怀疑

float close_float = Float.valueOf(temp_present[1].trim());

如果temp_present中只有一个值。检查你的价值观。