Pandas的数据透视表或分组表?

时间:2015-06-06 05:56:25

标签: python pandas count group-by pivot-table

我有一个希望直截了当的问题,在过去3个小时里给我带来了很多困难。应该很容易。

这是挑战。

我有一个pandas数据帧:

+--------------------------+
|     Col 'X'    Col 'Y'  |
+--------------------------+
|     class 1      cat 1  |
|     class 2      cat 1  |
|     class 3      cat 2  |
|     class 2      cat 3  |
+--------------------------+

我希望将数据框转换为:

+------------------------------------------+
|                  cat 1    cat 2    cat 3 |
+------------------------------------------+
|     class 1         1        0        0  |
|     class 2         1        0        1  |
|     class 3         0        1        0  |
+------------------------------------------+

值是值计数。有人有任何见解吗?谢谢!

1 个答案:

答案 0 :(得分:43)

以下几种方法可以重塑您的数据df

In [27]: df
Out[27]:
     Col X  Col Y
0  class 1  cat 1
1  class 2  cat 1
2  class 3  cat 2
3  class 2  cat 3

1)使用pd.crosstab()

In [28]: pd.crosstab(df['Col X'], df['Col Y'])
Out[28]:
Col Y    cat 1  cat 2  cat 3
Col X
class 1      1      0      0
class 2      1      0      1
class 3      0      1      0

2)或者,使用'Col X','Col Y'上的groupby unstack而不是Col Y,然后使用零填充NaNs。< / p>

In [29]: df.groupby(['Col X','Col Y']).size().unstack('Col Y', fill_value=0)
Out[29]:
Col Y    cat 1  cat 2  cat 3
Col X
class 1      1      0      0
class 2      1      0      1
class 3      0      1      0

3)或者,将pd.pivot_table()index=Col Xcolumns=Col Y

一起使用
In [30]: pd.pivot_table(df, index=['Col X'], columns=['Col Y'], aggfunc=len, fill_value=0)
Out[30]:
Col Y    cat 1  cat 2  cat 3
Col X
class 1      1      0      0
class 2      1      0      1
class 3      0      1      0

4)或者,set_index使用unstack

In [492]: df.assign(v=1).set_index(['Col X', 'Col Y'])['v'].unstack(fill_value=0)
Out[492]:
Col Y    cat 1  cat 2  cat 3
Col X
class 1      1      0      0
class 2      1      0      1
class 3      0      1      0