我正在使用fuzzywuzzy在公司名称的csv中查找近似匹配项。我正在将手动匹配的字符串与不匹配的字符串进行比较,以期找到一些有用的邻近匹配,但是,我在fuzzywuzzy中得到一个字符串或缓冲区错误。我的代码是:
from fuzzywuzzy import process
from pandas import read_csv
if __name__ == '__main__':
df = read_csv("usm_clean.csv", encoding = "ISO-8859-1")
df_false = df[df['match_manual'].isnull()]
df_true = df[df['match_manual'].notnull()]
sss_false = df_false['sss'].values.tolist()
sss_true = df_true['sss'].values.tolist()
for sssf in sss_false:
mmm = process.extractOne(sssf, sss_true) # find best choice
print sssf + str(tuple(mmm))
这会产生以下错误:
Traceback (most recent call last):
File "fuzzywuzzy_usm2_csv_test.py", line 21, in <module>
mmm = process.extractOne(sssf, sss_true) # find best choice
File "/usr/local/lib/python2.7/site-packages/fuzzywuzzy/process.py", line 123, in extractOne
best_list = extract(query, choices, processor, scorer, limit=1)
File "/usr/local/lib/python2.7/site-packages/fuzzywuzzy/process.py", line 84, in extract
processed = processor(choice)
File "/usr/local/lib/python2.7/site-packages/fuzzywuzzy/utils.py", line 63, in full_process
string_out = StringProcessor.replace_non_letters_non_numbers_with_whitespace(s)
File "/usr/local/lib/python2.7/site-packages/fuzzywuzzy/string_processing.py", line 25, in replace_non_letters_non_numbers_with_whitespace
return cls.regex.sub(u" ", a_string)
TypeError: expected string or buffer
这与导入指定编码的pandas的效果有关,我添加了这些效果以防止UnicodeDecodeErrors
但是导致此错误的效果。我试图使用str(sssf)
强制对象,但这不起作用。
所以,我在这里隔离了导致错误的一行:#N/A,,,,,,
(下面粘贴的代码中的第29行)。我认为导致错误的是#
,但奇怪的是它不是,导致问题的A
字符,因为文件在删除时有效。对我来说奇怪的是,下面两行的字符串是N/A
,它解析得很好,但是,当我删除#
符号时,第29行将不会解析,即使该字段看起来与字段相同下方。
sss,sid,match_manual,notes,match_date,source,match_by
N20 KIDS,1095543_cha,,,2014-10-12,,20140429_fuzzy_match.ktr (stream 3)
N21 FESTIVAL,08190588_com,,,2014-10-12,,20140429_fuzzy_match.ktr (stream 3)
N21 LTD,,,,,,
N21 LTD.,04615294_com,true,,2014-12-02,,OpenCorps
N2 CHECK,08105000_com,,,2014-10-12,,20140429_fuzzy_match.ktr (stream 3)
N2 CHECK LIMITED,06139690_com,true,,2014-12-02,,OpenCorps
N2CHECK LIMITED,08184223_com,,,2014-05-05,,20140429_fuzzy_match.ktr (stream 3)
N 2 CHECK LTD,05729595_com,,,2014-05-05,,20140429_fuzzy_match.ktr (stream 2)
N2 CHECK LTD,06139690_com,true,,2014-12-02,,OpenCorps
N2CHECK LTD,05729595_com,,,2014-05-05,,20140429_fuzzy_match.ktr (stream 2)
N2E & BACK LTD,05218805_com,,,2014-05-05,,20140429_fuzzy_match.ktr (stream 2)
N2 GROUP LLC,04627044_com,,,2014-10-12,,20140429_fuzzy_match.ktr (stream 3)
N2 GROUP LTD,04475764_com,true,,2014-05-05,data taken from u_supplier_match,20140429_fuzzy_match.ktr (stream 2)
N2R PRODUCTIONS,SC266951_com,,,2014-10-12,,20140429_fuzzy_match.ktr (stream 3)
N2 VISUAL COMMUNICATIONS LIMITED,,,,,,
N2 VISUAL COMMUNICATIONS LTD,03144224_com,true,,2014-12-02,data taken from u_supplier_match,OpenCorps
N2WEB,07636689_com,,,2014-10-12,,20140429_fuzzy_match.ktr (stream 3)
N3 DISPLAY GRAPHICS LTD,04008480_com,true,,2014-12-02,data taken from u_supplier_match,OpenCorps
N3O LIMITED,06561158_com,true,,2014-12-02,,OpenCorps
N3O LTD,,,,,,
N400138,,,,,,
N400360,,,,,,
N4K LTD,07054740_com,,,2014-05-05,,20140429_fuzzy_match.ktr (stream 2)
N51 LTD,,,,,,
N68 LTD,,,,,,
N8 LTD,,,,,,
N9 DESIGN,07342091_com,true,,2015-02-07,openrefine/opencorporates,IM
#N/A,,,,,,
N A,,,,,,
N/A,red_general_xtr,true,Matches done manually,2015-04-16,manual matching,IM
(N) A & A BUILDERS LTD,,,,,,
答案 0 :(得分:2)
默认情况下,pandas.read_csv
将字符串'N/A'
解析为非数字(NaN
)
在您的情况下,这意味着您最终得到nan
值而不是字符串。在您的示例数据集中,这发生在两个地方
从底部开始的第三行(您在问题中突出显示的行)会产生sss_false[-3] == nan
最后一行产生sss_true[-1] == nan
。
如果要将字符串'N/A'
解析为字符串而不是nan
,则执行此操作的方法是替换
df = read_csv("usm_clean.csv", encoding = "ISO-8859-1")
与
df = read_csv("usm_clean.csv", encoding = "ISO-8859-1", keep_default_na=False, na_values='')
pandas docs中描述了这些额外选项的含义。
na_values : list-like或dict,默认无
要识别为NA / NaN的其他字符串。如果dict通过,则特定的每列NA值
keep_default_na : bool,默认为True
如果指定了na_values且keep_default_na为False,则会覆盖默认的NaN值,否则它们会被附加到
因此,上述修改告诉pandas将空字符串识别为NA并丢弃默认值'N/A'
如果您要在第一列中放弃包含'N/A'
的行,则需要从nan
和sss_true
中删除sss_false
成员。一种方法是:
sss_true = [x for x in sss_true if type(x) != str]
sss_false = [x for x in sss_false if type(x) != str]
答案 1 :(得分:0)
您的sss_true
变量包含:
[
u'N21 LTD.',
u'N2 CHECK LIMITED',
u'N2 CHECK LTD',
u'N2 GROUP LTD',
u'N2 VISUAL COMMUNICATIONS LTD',
u'N3 DISPLAY GRAPHICS LTD',
u'N3O LIMITED',
u'N9 DESIGN',
nan # <---- note this
]
一旦摆脱了not-a-number值,一切都会按预期开始工作。