集群模式下的Spark Streaming正在抛出FileNotFoundException
与linux文件系统(GFS - 所有节点上的共享文件系统),但在HDFS作为输入时正常工作。
实际上,所有工作节点都可以在此路径上访问和访问数据。
JavaPairInputDStream<Text, Text> myDStream =
jssc.fileStream(path, Text.class, Text.class, customInputFormat.class, new Function<Path, Boolean>() {
@Override
public Boolean call(Path v1) throws Exception {
return Boolean.TRUE;
}
}, false);
错误消息:
14/06/03 21:33:40 WARN FileInputDStream: Error finding new files
java.io.FileNotFoundException: File /data/spark/input does not exist.
at org.apache.hadoop.hdfs.DistributedFileSystem.listStatusInternal(DistributedFileSystem.java:697)
at org.apache.hadoop.hdfs.DistributedFileSystem.access$600(DistributedFileSystem.java:105)
at org.apache.hadoop.hdfs.DistributedFileSystem$15.doCall(DistributedFileSystem.java:755)
at org.apache.hadoop.hdfs.DistributedFileSystem$15.doCall(DistributedFileSystem.java:751)
at org.apache.hadoop.fs.FileSystemLinkResolver.resolve(FileSystemLinkResolver.java:81)
at org.apache.hadoop.hdfs.DistributedFileSystem.listStatus(DistributedFileSystem.java:751)
at org.apache.hadoop.fs.FileSystem.listStatus(FileSystem.java:1485)
at org.apache.hadoop.fs.FileSystem.listStatus(FileSystem.java:1525)
at org.apache.spark.streaming.dstream.FileInputDStream.findNewFiles(FileInputDStream.scala:176)
at org.apache.spark.streaming.dstream.FileInputDStream.compute(FileInputDStream.scala:134)
at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1$$anonfun$1.apply(DStream.scala:300)
at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1$$anonfun$1.apply(DStream.scala:300)
at scala.util.DynamicVariable.withValue(DynamicVariable.scala:57)
at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1.apply(DStream.scala:299)
at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1.apply(DStream.scala:287)
at scala.Option.orElse(Option.scala:257)
at org.apache.spark.streaming.dstream.DStream.getOrCompute(DStream.scala:284)
at org.apache.spark.streaming.dstream.MappedDStream.compute(MappedDStream.scala:35)
at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1$$anonfun$1.apply(DStream.scala:300)
at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1$$anonfun$1.apply(DStream.scala:300)
at scala.util.DynamicVariable.withValue(DynamicVariable.scala:57)
at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1.apply(DStream.scala:299)
at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1.apply(DStream.scala:287)
at scala.Option.orElse(Option.scala:257)
at org.apache.spark.streaming.dstream.DStream.getOrCompute(DStream.scala:284)
at org.apache.spark.streaming.dstream.FlatMappedDStream.compute(FlatMappedDStream.scala:35)
at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1$$anonfun$1.apply(DStream.scala:300)
at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1$$anonfun$1.apply(DStream.scala:300)
at scala.util.DynamicVariable.withValue(DynamicVariable.scala:57)
at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1.apply(DStream.scala:299)
at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1.apply(DStream.scala:287)
at scala.Option.orElse(Option.scala:257)
at org.apache.spark.streaming.dstream.DStream.getOrCompute(DStream.scala:284)
at org.apache.spark.streaming.dstream.FilteredDStream.compute(FilteredDStream.scala:35)
at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1$$anonfun$1.apply(DStream.scala:300)
at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1$$anonfun$1.apply(DStream.scala:300)
at scala.util.DynamicVariable.withValue(DynamicVariable.scala:57)
at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1.apply(DStream.scala:299)
at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1.apply(DStream.scala:287)
at scala.Option.orElse(Option.scala:257)
at org.apache.spark.streaming.dstream.DStream.getOrCompute(DStream.scala:284)
at org.apache.spark.streaming.dstream.MappedDStream.compute(MappedDStream.scala:35)
at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1$$anonfun$1.apply(DStream.scala:300)
at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1$$anonfun$1.apply(DStream.scala:300)
at scala.util.DynamicVariable.withValue(DynamicVariable.scala:57)
at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1.apply(DStream.scala:299)
at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1.apply(DStream.scala:287)
at scala.Option.orElse(Option.scala:257)
at org.apache.spark.streaming.dstream.DStream.getOrCompute(DStream.scala:284)
at org.apache.spark.streaming.dstream.FlatMappedDStream.compute(FlatMappedDStream.scala:35)
at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1$$anonfun$1.apply(DStream.scala:300)
at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1$$anonfun$1.apply(DStream.scala:300)
at scala.util.DynamicVariable.withValue(DynamicVariable.scala:57)
at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1.apply(DStream.scala:299)
at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1.apply(DStream.scala:287)
at scala.Option.orElse(Option.scala:257)
at org.apache.spark.streaming.dstream.DStream.getOrCompute(DStream.scala:284)
at org.apache.spark.streaming.dstream.ForEachDStream.generateJob(ForEachDStream.scala:38)
at org.apache.spark.streaming.DStreamGraph$$anonfun$1.apply(DStreamGraph.scala:116)
at org.apache.spark.streaming.DStreamGraph$$anonfun$1.apply(DStreamGraph.scala:116)
at scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:251)
at scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:251)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
at scala.collection.TraversableLike$class.flatMap(TraversableLike.scala:251)
at scala.collection.AbstractTraversable.flatMap(Traversable.scala:105)
at org.apache.spark.streaming.DStreamGraph.generateJobs(DStreamGraph.scala:116)
at org.apache.spark.streaming.scheduler.JobGenerator$$anonfun$2.apply(JobGenerator.scala:243)
at org.apache.spark.streaming.scheduler.JobGenerator$$anonfun$2.apply(JobGenerator.scala:241)
at scala.util.Try$.apply(Try.scala:161)
at org.apache.spark.streaming.scheduler.JobGenerator.generateJobs(JobGenerator.scala:241)
at org.apache.spark.streaming.scheduler.JobGenerator.org$apache$spark$streaming$scheduler$JobGenerator$$processEvent(JobGenerator.scala:177)
at org.apache.spark.streaming.scheduler.JobGenerator$$anonfun$start$1$$anon$1$$anonfun$receive$1.applyOrElse(JobGenerator.scala:86)
at akka.actor.ActorCell.receiveMessage(ActorCell.scala:498)
at akka.actor.ActorCell.invoke(ActorCell.scala:456)
at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:237)
at akka.dispatch.Mailbox.run(Mailbox.scala:219)
at akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:386)
at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260)
at scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339)
at scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979)
at scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107)
14/06/03 21:33:40 INFO FileInputDStream: New files at time 1433347420000 ms:
注意: Spark shell适用于此共享文件系统。
如何解决此问题?
答案 0 :(得分:1)
JavaPairInputDStream<Text, Text> myDStream =
jssc.fileStream(path, Text.class, Text.class, customInputFormat.class, new Function<Path, Boolean>() {
@Override
public Boolean call(Path v1) throws Exception {
return Boolean.TRUE;
}
}, false);
在目录路径前缀为file:///
答案 1 :(得分:0)
我的猜测可能是权限问题。
确保在运行作业时,您拥有足够权限的用户(对于主节点或您提交作业的计算机)ssh到工作节点和工作文件系统上的r / w / x。