在Python(2.7)中,我尝试在芹菜任务(celery 3.1.17)中创建进程(使用多处理),但它给出了错误:
daemonic processes are not allowed to have children
谷歌搜索它,我发现台球的最新版本修复了“bug”,但我有最新版本(3.3.0.20)并且错误仍在发生。我还尝试在我的芹菜任务中实现this workaround,但它也会出现同样的错误。
有人知道怎么做吗? 任何帮助表示赞赏, 帕特里克
编辑:代码片段
任务:
from __future__ import absolute_import
from celery import shared_task
from embedder.models import Embedder
@shared_task
def embedder_update_task(embedder_id):
embedder = Embedder.objects.get(pk=embedder_id)
embedder.test()
人工测试功能(from here):
def sleepawhile(t):
print("Sleeping %i seconds..." % t)
time.sleep(t)
return t
def work(num_procs):
print("Creating %i (daemon) workers and jobs in child." % num_procs)
pool = mp.Pool(num_procs)
result = pool.map(sleepawhile,
[randint(1, 5) for x in range(num_procs)])
# The following is not really needed, since the (daemon) workers of the
# child's pool are killed when the child is terminated, but it's good
# practice to cleanup after ourselves anyway.
pool.close()
pool.join()
return result
def test(self):
print("Creating 5 (non-daemon) workers and jobs in main process.")
pool = MyPool(5)
result = pool.map(work, [randint(1, 5) for x in range(5)])
pool.close()
pool.join()
print(result)
我的真实的功能:
import mulitprocessing as mp
def test(self):
self.init()
for saveindex in range(self.start_index,self.start_index+self.nsaves):
self.create_storage(saveindex)
# process creation:
procs = [mp.Process(name="Process-"+str(i),target=getattr(self,self.training_method),args=(saveindex,)) for i in range(self.nproc)]
for p in procs: p.start()
for p in procs: p.join()
print "End of task"
init函数定义了一个多处理数组和一个共享相同内存的对象,以便我的所有进程可以同时更新同一个数组:
mp_arr = mp.Array(c.c_double, np.random.rand(1000000)) # example
self.V = numpy.frombuffer(mp_arr.get_obj()) #all the processes can update V
调用任务时生成错误:
[2015-06-04 09:47:46,659: INFO/MainProcess] Received task: embedder.tasks.embedder_update_task[09f8abae-649a-4abc-8381-bdf258d33dda]
[2015-06-04 09:47:47,674: WARNING/Worker-5] Creating 5 (non-daemon) workers and jobs in main process.
[2015-06-04 09:47:47,789: ERROR/MainProcess] Task embedder.tasks.embedder_update_task[09f8abae-649a-4abc-8381-bdf258d33dda] raised unexpected: AssertionError('daemonic processes are not allowed to have children',)
Traceback (most recent call last):
File "/usr/local/lib/python2.7/dist-packages/celery/app/trace.py", line 240, in trace_task
R = retval = fun(*args, **kwargs)
File "/usr/local/lib/python2.7/dist-packages/celery/app/trace.py", line 438, in __protected_call__
return self.run(*args, **kwargs)
File "/home/patrick/django/entite-tracker-master/entitetracker/embedder/tasks.py", line 21, in embedder_update_task
embedder.test()
File "/home/patrick/django/entite-tracker-master/entitetracker/embedder/models.py", line 475, in test
pool = MyPool(5)
File "/usr/lib/python2.7/multiprocessing/pool.py", line 159, in __init__
self._repopulate_pool()
File "/usr/lib/python2.7/multiprocessing/pool.py", line 223, in _repopulate_pool
w.start()
File "/usr/lib/python2.7/multiprocessing/process.py", line 124, in start
'daemonic processes are not allowed to have children'
AssertionError: daemonic processes are not allowed to have children
答案 0 :(得分:8)
billiard
和multiprocessing
是不同的库 - billiard
是Celery项目自己的multiprocessing
分支。您需要导入billiard
并使用它而不是multiprocessing
然而,更好的答案可能是您应该重构代码,以便生成更多Celery任务,而不是使用两种不同的方式来分发您的工作。
您可以使用Celery canvas
执行此操作from celery import group
@app.task
def sleepawhile(t):
print("Sleeping %i seconds..." % t)
time.sleep(t)
return t
def work(num_procs):
return group(sleepawhile.s(randint(1, 5)) for x in range(num_procs)])
def test(self):
my_group = group(work(randint(1, 5)) for x in range(5))
result = my_group.apply_async()
result.get()
我试图制作一个使用canvas原语而不是多处理的代码的工作版本。然而,由于你的例子非常人为,所以想出一些有意义的东西并不容易。
更新
以下是使用Celery画布的真实代码的翻译:
tasks.py
:
@shared_task
run_training_method(saveindex, embedder_id):
embedder = Embedder.objects.get(pk=embedder_id)
embedder.training_method(saveindex)
models.py
:
from tasks import run_training_method
from celery import group
class Embedder(Model):
def embedder_update_task(self):
my_group = []
for saveindex in range(self.start_index, self.start_index + self.nsaves):
self.create_storage(saveindex)
# Add to list
my_group.extend([run_training_method.subtask((saveindex, self.id))
for i in range(self.nproc)])
result = group(my_group).apply_async()
答案 1 :(得分:2)
如果您使用的子模块/库已经进行了多处理,那么设置worker的-P threads
参数可能更有意义:
celery worker -P threads
https://github.com/celery/celery/issues/4525#issuecomment-566503932
答案 2 :(得分:1)
当我在Celery 4.2.0和Python3.6中使用多处理时,我得到了这个。 通过使用台球解决了这个问题。
我从更改了源代码
from billiard.context import Process
到
billiard.context
解决了此错误。
注意,导入源是billiard.process
而不是=vlookup(b3, indirect(text(c1, "'@'!\A\:\E")), 3, false)
答案 3 :(得分:1)
我在django中尝试从Celery任务调用多处理方法时遇到类似的错误。我解决了使用台球而不是多处理
import billiard as multiprocessing
希望有帮助。