芹菜:守护进程不允许有孩子

时间:2015-06-03 15:21:47

标签: python python-2.7 celery daemon python-multiprocessing

在Python(2.7)中,我尝试在芹菜任务(celery 3.1.17)中创建进程(使用多处理),但它给出了错误:

daemonic processes are not allowed to have children
谷歌搜索它,我发现台球的最新版本修复了“bug”,但我有最新版本(3.3.0.20)并且错误仍在发生。我还尝试在我的芹菜任务中实现this workaround,但它也会出现同样的错误。

有人知道怎么做吗? 任何帮助表示赞赏, 帕特里克

编辑:代码片段

任务:

from __future__ import absolute_import
from celery import shared_task
from embedder.models import Embedder

@shared_task
def embedder_update_task(embedder_id):
    embedder = Embedder.objects.get(pk=embedder_id)
    embedder.test()

人工测试功能(from here):

def sleepawhile(t):
    print("Sleeping %i seconds..." % t)
    time.sleep(t)
    return t    

def work(num_procs):
    print("Creating %i (daemon) workers and jobs in child." % num_procs)
    pool = mp.Pool(num_procs)

    result = pool.map(sleepawhile,
        [randint(1, 5) for x in range(num_procs)])

    # The following is not really needed, since the (daemon) workers of the
    # child's pool are killed when the child is terminated, but it's good
    # practice to cleanup after ourselves anyway.
    pool.close()
    pool.join()
    return result

def test(self):
    print("Creating 5 (non-daemon) workers and jobs in main process.")
    pool = MyPool(5)

    result = pool.map(work, [randint(1, 5) for x in range(5)])

    pool.close()
    pool.join()
    print(result)

我的真实的功能:

import mulitprocessing as mp

def test(self):
    self.init()
    for saveindex in range(self.start_index,self.start_index+self.nsaves):
        self.create_storage(saveindex)
        # process creation:
        procs = [mp.Process(name="Process-"+str(i),target=getattr(self,self.training_method),args=(saveindex,)) for i in range(self.nproc)]
        for p in procs: p.start()
        for p in procs: p.join()
    print "End of task"

init函数定义了一个多处理数组和一个共享相同内存的对象,以便我的所有进程可以同时更新同一个数组:

mp_arr = mp.Array(c.c_double, np.random.rand(1000000)) # example
self.V = numpy.frombuffer(mp_arr.get_obj()) #all the processes can update V

调用任务时生成错误:

[2015-06-04 09:47:46,659: INFO/MainProcess] Received task: embedder.tasks.embedder_update_task[09f8abae-649a-4abc-8381-bdf258d33dda]
[2015-06-04 09:47:47,674: WARNING/Worker-5] Creating 5 (non-daemon) workers and jobs in main process.
[2015-06-04 09:47:47,789: ERROR/MainProcess] Task embedder.tasks.embedder_update_task[09f8abae-649a-4abc-8381-bdf258d33dda]     raised unexpected: AssertionError('daemonic processes are not allowed to have children',)
Traceback (most recent call last):
  File "/usr/local/lib/python2.7/dist-packages/celery/app/trace.py", line 240, in trace_task
   R = retval = fun(*args, **kwargs)
  File "/usr/local/lib/python2.7/dist-packages/celery/app/trace.py", line 438, in __protected_call__
   return self.run(*args, **kwargs)
  File "/home/patrick/django/entite-tracker-master/entitetracker/embedder/tasks.py", line 21, in embedder_update_task
    embedder.test()
  File "/home/patrick/django/entite-tracker-master/entitetracker/embedder/models.py", line 475, in test
    pool = MyPool(5)
  File "/usr/lib/python2.7/multiprocessing/pool.py", line 159, in __init__
self._repopulate_pool()
  File "/usr/lib/python2.7/multiprocessing/pool.py", line 223, in _repopulate_pool
    w.start()
  File "/usr/lib/python2.7/multiprocessing/process.py", line 124, in start
'daemonic processes are not allowed to have children'
AssertionError: daemonic processes are not allowed to have children

4 个答案:

答案 0 :(得分:8)

billiardmultiprocessing是不同的库 - billiard是Celery项目自己的multiprocessing分支。您需要导入billiard并使用它而不是multiprocessing

然而,更好的答案可能是您应该重构代码,以便生成更多Celery任务,而不是使用两种不同的方式来分发您的工作。

您可以使用Celery canvas

执行此操作
from celery import group

@app.task
def sleepawhile(t):
    print("Sleeping %i seconds..." % t)
    time.sleep(t)
    return t    

def work(num_procs):
    return group(sleepawhile.s(randint(1, 5)) for x in range(num_procs)])

def test(self):
    my_group = group(work(randint(1, 5)) for x in range(5))
    result = my_group.apply_async()
    result.get()

我试图制作一个使用canvas原语而不是多处理的代码的工作版本。然而,由于你的例子非常人为,所以想出一些有意义的东西并不容易。

更新

以下是使用Celery画布的真实代码的翻译:

tasks.py

@shared_task
run_training_method(saveindex, embedder_id):
    embedder = Embedder.objects.get(pk=embedder_id)
    embedder.training_method(saveindex)

models.py

from tasks import run_training_method
from celery import group

class Embedder(Model):

    def embedder_update_task(self):
        my_group = []

        for saveindex in range(self.start_index, self.start_index + self.nsaves):
            self.create_storage(saveindex)
            # Add to list
            my_group.extend([run_training_method.subtask((saveindex, self.id)) 
                         for i in range(self.nproc)])

        result = group(my_group).apply_async()

答案 1 :(得分:2)

如果您使用的子模块/库已经进行了多处理,那么设置worker的-P threads参数可能更有意义:

celery worker -P threads

https://github.com/celery/celery/issues/4525#issuecomment-566503932

答案 2 :(得分:1)

当我在Celery 4.2.0和Python3.6中使用多处理时,我得到了这个。 通过使用台球解决了这个问题。

我从更改了源代码

from billiard.context import Process

billiard.context

解决了此错误。

注意,导入源是billiard.process而不是=vlookup(b3, indirect(text(c1, "'@'!\A\:\E")), 3, false)

答案 3 :(得分:1)

我在django中尝试从Celery任务调用多处理方法时遇到类似的错误。我解决了使用台球而不是多处理

import billiard as multiprocessing

希望有帮助。