分段故障;核心倾倒了Fortran

时间:2015-06-03 06:17:39

标签: fortran gfortran fortran77

我想问一下我的Fortran代码发生的错误。由于我是fortran的新手,我在2天后无法处理这个问题,我也在四处搜索,但仍然不知道如何修复它。

    PROGRAM SUBDEM
        IMPLICIT REAL*8(A-H,O-Z)
        REAL*8 NTET,NPTK
        INTEGER*4 NA,NC,NE,NBAND,NTMAX,IDEF
C       CALL SETK08(NA,NC, A,C, PTK,NPTK, IDEF,NTET, NKMAX,NTMAX)
C       CALL DOSTET(ENER,IDIME,NBAND,IDEF,NTET,XE,NE,Y,Z)
        PRINT *,'Test print'
C       with DIMENSION PTK(4,NKMAX),IDEF(5,NTMAX)
C       NA,NC are the two k-mesh discretization parameters,
C       A,C are the two parameters "a","c" of the direct lattice.
C       PTK is a REAL*8 array and IDEF is an INTEGER*4 array
        NA=3
        NC=3
        A=1.67
        C=2.1
        NKMAX=550
        NTMAX=50.D3
        CALL SETK08(NA,NC,A,C,PTK,NPTK,IDEF,NTET,NKMAX,NTMAX)

        NE = 20
        IDIME = 5.0
        NBAND = 5
        XE = 4
        NE = 15
C       CALL DOSTET(ENER,IDIME,NBAND,IDEF,NTET,XE,NE,Y,Z)
C       ENER    (REAL*8 two-dimensional array, input)
C       ENER(NU,IK) is the energy of band NU, computed for the k-point IK, defined by the SETK** routine
C       IDIME   (INTEGER*4, input)
C       First dimension of the array ENER, as defined in the calling program. IDIME must be at least equal to NBAND
C       NBAND   (INTEGER*4, input)
C       Number of energy bands included in the summation
C       IDEF    (INTEGER*4 two-dimensional array,input)
C       Table defining the tetrahedron corners, as obtained from the SETK** routines. The first dimension is 5.
C       NTET    (INTEGER*4, input)
C       Number of tetrahedra filling the volume V (provided by a SETK** routine)
C       XE  (REAL*8 one-dimensional array, input)
C       Contains the values of the energies E where the density of states and integrated density of states are to be computed.
C       Dimension is at least NE.
C       NE  (INTEGER*4, input)
C       Number of energy points where the density of states and integrated density of states are computed. Only the first NE locations of XE are used by DOSTET.
C       Y   (REAL*8 one-dimensional array, output)
C       The NE first components of this vector contain, on return, the density of states evaluated at energy points corresponding to the NE first components of XE.
C       Z   (REAL*8 one-dimensional array, output)
C       The NE first components of this vector contain, on return, the integrated density of states evaluated at energy points corresponding to the NE first components of XE.
    END


          SUBROUTINE SETK08(NA,NC,A,C,PTK,NPTK,IDEF,NTET,NKMAX,NTMAX)
C     SET THE K-POINTS IN THE 1/16TH OF THE BRILLOUIN ZONE FOR A
C     SIMPLE TETRAGONAL LATTICE WITH PARAMETERS A, C
C     SYMMETRY IS D4H
      IMPLICIT REAL*8(A-H,O-Z)
      REAL*4 AVOL
      DIMENSION PTK(4,NKMAX),IDEF(5,NTMAX)
      EQUIVALENCE (IVOL,AVOL)

      PI = 3.141592653589793238D0
      IF(NA.LE.0.OR.NC.LE.0) GOTO 97
      IF(A.LE.0.0D0 .OR. C.LE.0.0D0) GOTO 98
      NPTK = (NA+1)*(NA+2)*(NC+1)/2
      IF(NPTK.GT.NKMAX) STOP '*** <SETK08> NPTK EXCEEDS NKMAX ***'
      NTET = 3*NC*NA**2
      IF(NTET.GT.NTMAX) STOP '*** <SETK08> NTET EXCEEDS NTMAX ***'
C *** SET THE K-POINTS
      AK=PI/A/NA
      CK=PI/C/NC
      WRITE(6,100) NPTK,NTET,NA*AK,NA*AK,NC*CK
      W = 2.0D0/(NA*NA*NC)
      NPTK=0
      DO 1 I=0,NA,1
      DO 1 J=0,I,1
      DO 1 K=0,NC,1
C        NPTK = I*(I+1)/2*NZ1 + J*NZ1 + K+1
      WK = W
      IF(I.EQ.0) WK = WK/2.0D0
      IF(J.EQ.0) WK = WK/2.0D0
      IF(J.EQ.I) WK = WK/2.0D0
      IF(I.EQ.NA) WK = WK/2.0D0
      IF(J.EQ.NA) WK = WK/2.0D0
      IF(K.EQ.0 .OR. K.EQ.NC) WK = WK/2.0D0
      NPTK=NPTK+1
      PTK(1,NPTK)=I*AK
      PTK(2,NPTK)=J*AK
      PTK(3,NPTK)=K*CK
      PTK(4,NPTK)=WK
    1 CONTINUE
C *** DEFINE THE TETRAHEDRA
      NZ1=NC+1
      NTET=0
      I7=0
      I=0
    4 IX=(I+1)*NZ1
      J = 0
    5 K=0
      I7=I*IX/2+J*NZ1
    6 I7=I7+1
      I6=I7+IX
      I2=I6+NZ1
      I1=I2+1
      NTET=NTET+1
      IDEF(1,NTET)=I7
      IDEF(2,NTET)=I6
      IDEF(3,NTET)=I2
      IDEF(4,NTET)=I1
      I8=I7+1
      I5=I6+1
      NTET=NTET+1
      IDEF(1,NTET)=I7
      IDEF(2,NTET)=I6
      IDEF(3,NTET)=I5
      IDEF(4,NTET)=I1
      NTET=NTET+1
      IDEF(1,NTET)=I7
      IDEF(2,NTET)=I8
      IDEF(3,NTET)=I5
      IDEF(4,NTET)=I1
      IF(J.EQ.I) GOTO 7
      I3=I7+NZ1
      I4=I3+1
      NTET=NTET+1
      IDEF(1,NTET)=I7
      IDEF(2,NTET)=I3
      IDEF(3,NTET)=I2
      IDEF(4,NTET)=I1
      NTET=NTET+1
      IDEF(1,NTET)=I7
      IDEF(2,NTET)=I3
      IDEF(3,NTET)=I4
      IDEF(4,NTET)=I1
      NTET=NTET+1
      IDEF(1,NTET)=I7
      IDEF(2,NTET)=I8
      IDEF(3,NTET)=I4
      IDEF(4,NTET)=I1
    7 K=K+1
      IF(K.LT.NC) GOTO 6
      J=J+1
      IF(J.LE.I) GOTO 5
      I=I+1
      IF(I.LT.NA) GOTO 4
      AVOL=1.D0/DFLOAT(NTET)
      DO 15 IT=1,NTET
   15 IDEF(5,IT)=IVOL
      PRINT *,NTET,NPTK
      RETURN
   97 WRITE(6,101)
      GOTO 99
   98 WRITE(6,102)
   99 STOP
  100 FORMAT(' SAMPLING THE 16TH PART OF A SQUARE-BASED PRISM'/
     .1X,I5,' K-POINTS',I7,' TETRAHEDRA'/
     .' KXMAX =',D11.4,'  KYMAX =',D11.4,'  KZMAX =',D11.4)
  101 FORMAT(' *** <SETK08> NA OR NC IS NOT A POSITIVE INTEGER ***')
  102 FORMAT(' *** <SETK08> A AND C MUST BE POSITIVE ***')
      END


        SUBROUTINE DOSTET(ENER,IDIME,NBAND,IDEF,NTET,XE,NE,Y,Z)
C     COMPUTE A DENSITY OF STATES USING THE TETRAHEDRONS METHOD.
C     XE CONTAINS THE ENERGIES, Y AND Z RETURN THE RELATED DENSITY OF
C     STATES AND THE INTEGRATED DENSITY OF STATES, RESPECTIVELY.
      IMPLICIT REAL*8(A-H,O-Z)
      REAL*4 AVOL
      DIMENSION ENER(IDIME,1),XE(1),Y(1),Z(1),IDEF(5,1),C(4)
      EQUIVALENCE (IVOL,AVOL),(C(1),E1),(C(2),E2),(C(3),E3),(C(4),E4)
      DATA EPS/1.0D-05/
      DO 6 IX=1,NE
      Y(IX)=0.D0
    6 Z(IX)=0.D0
C
C     LOOP OVER THE TETRAHEDRONS
      DO 9 ITET=1,NTET
C
      IA=IDEF(1,ITET)
      IB=IDEF(2,ITET)
      IC=IDEF(3,ITET)
      ID=IDEF(4,ITET)
      IVOL=IDEF(5,ITET)
C
C     LOOP OVER THE BANDS
      DO 9 NB=1,NBAND
C
C *** DEFINE E1, E2, E3, E4, AS THE CORNER ENERGIES ORDERED BY
C *** DECREASING SIZE
      C(1)=ENER(NB,IA)
      C(2)=ENER(NB,IB)
      C(3)=ENER(NB,IC)
      C(4)=ENER(NB,ID)
      DO 2 I=1,4
      CC=C(I)
      J=I
    1 J=J+1
      IF(J.GT.4) GOTO 2
      IF(CC.GE.C(J)) GOTO 1
      C(I)=C(J)
      C(J)=CC
      CC=C(I)
      GOTO 1
    2 CONTINUE
      UNITE=1.0D0
      IF(E1.GT.E4) UNITE=E1-E4
      E12=(E1-E2)/UNITE
      E13=(E1-E3)/UNITE
      E14=(E1-E4)/UNITE
      E23=(E2-E3)/UNITE
      E24=(E2-E4)/UNITE
      E34=(E3-E4)/UNITE
      FACY=3.D0*DBLE(AVOL)/UNITE
      DO 9 IX=1,NE
      E=XE(IX)
      SURFAC=0.D0
      VOLUME=1.D0
      IF(E.GT.E1) GOTO 8
      VOLUME=0.D0
      IF(E.LT.E4) GOTO 8
      EE1=(E-E1)/UNITE
      IF(DABS(EE1).LT.EPS) EE1=0.D0
      EE2=(E-E2)/UNITE
      IF(DABS(EE2).LT.EPS) EE2=0.D0
      EE3=(E-E3)/UNITE
      IF(DABS(EE3).LT.EPS) EE3=0.D0
      EE4=(E-E4)/UNITE
      IF(DABS(EE4).LT.EPS) EE4=0.D0
      IF(E.GT.E3) GOTO 5
C *** E4.LE.E.AND.E.LE.E3
      IF(E4.EQ.E3) GOTO 3
      SURFAC=(EE4/E34)*(EE4/E24)
      VOLUME=SURFAC*EE4
      GOTO 8
    3 IF(E3.LT.E2) GOTO 8
      IF(E2.EQ.E1) GOTO 4
      SURFAC=1.D0/E12
      GOTO 8
    4 SURFAC=1.0D+15
      VOLUME=0.5D0
      GOTO 8
    5 IF(E.GT.E2) GOTO 7
C *** E3.LT.E.AND.E.LE.E2
      SURFAC=-(EE3*EE2/E23+EE4*EE1)/E13/E24
      VOLUME=(0.5D0*EE3*(2.D0*E13*E34+E13*EE4-E34*EE1-2.D0*EE1*EE4+
     +                 EE3*(EE3-3.D0*EE2)/E23)/E13+E34*E34)/E24
      GOTO 8
C *** E2.LT.E.AND.E.LE.E1
    7 SURFAC=(EE1/E12)*(EE1/E13)
      VOLUME=1.D0+SURFAC*EE1
    8 Y(IX)=Y(IX)+FACY*SURFAC
      Z(IX)=Z(IX)+DBLE(AVOL)*VOLUME
    9 CONTINUE
      RETURN
      END

似乎代码在第82行打破了:

PTK(1,NPTK)=DFLOAT(I)*DK

1 个答案:

答案 0 :(得分:2)

您忘记在主程序中声明PTK。由于IMPLICIT语句,它被解释为标量REAL*8。但是,子例程SETK08要求PTK为DIMENSION PTK(4,NKMAX)IDEF也是如此。

NPTKNTET应该是SETK08中的整数,但在主程序中声明为REAL*8

请不要使用隐式声明! 始终使用IMPLICIT NONE 并声明您的变量。

修复这些点将删除Segfault并生成

STOP *** <SETK08> NTET EXCEEDS NTMAX ***